Qualitative properties for a pseudo-parabolic equation with nonlocal reaction term

被引:0
作者
Yadong Zheng
Zhong Bo Fang
机构
[1] Ocean University of China,School of Mathematical Sciences
来源
Boundary Value Problems | / 2019卷
关键词
Pseudo-parabolic equation; Nonlocal reaction term; Blow-up; Life span; Asymptotic behavior; 35S11; 35B40; 35B44;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with the qualitative properties of solutions for null Neumann initial boundary value problem to a nonlocal pseudo-parabolic equation in the sense of H1(Ω)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}(\varOmega )$\end{document}-norm. We establish sufficient conditions to guarantee that the solution with initial energy exists globally or blows up at finite time under an appropriate range of parameters. Moreover, life span of the blow-up solution, decay rate of the global solution, and growth estimate are derived.
引用
收藏
相关论文
共 84 条
[1]  
Barenblat G.(1960)Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks J. Appl. Math. Mech. 24 1286-1303
[2]  
Zheltov I.(1972)Model equations for long waves in nonlinear dispersive systems Philos. Trans. R. Soc. Lond. Ser. A 272 47-78
[3]  
Kochiva I.(1963)Certain non-steady flows of second-order fluids Arch. Ration. Mech. Anal. 14 1-26
[4]  
Benjamin T.B.(1968)On a theory of heat conduction involving two temperatures Z. Angew. Math. Phys. 19 614-627
[5]  
Bona J.L.(2003)Three-dimensional nonlinear evolution equations of pseudoparabolic type in problems of mathematical physics Zh. Vychisl. Mat. Mat. Fiz. 43 1835-1869
[6]  
Mahony J.J.(1989)Local vs. non-local interactions in population dynamics J. Math. Biol. 27 65-80
[7]  
Ting T.W.(1994)Non-local reaction-diffusion equations modelling predator-prey coevolution Publ. Mat. 38 315-325
[8]  
Chen P.J.(2004)Effect of aggregation on population recovery modeled by a forward-backward pseudoparabolic equation Trans. Am. Math. Soc. 356 2739-2756
[9]  
Gurtin M.E.(2011)Coexistence and optimal control problems for a degenerate predator-prey mode J. Math. Anal. Appl. 378 528-540
[10]  
Korpusov M.O.(2011)Dirac mass dynamics in multidimensional nonlocal parabolic equations Commun. Partial Differ. Equ. 36 1071-1098