New dual-mode Kadomtsev–Petviashvili model with strong–weak surface tension: analysis and application

被引:0
作者
Issam Abu Irwaq
Marwan Alquran
Imad Jaradat
Dumitru Baleanu
机构
[1] Jordan University of Science & Technology,Department of Mathematics and Statistics
[2] Cankaya University,Department of Mathematics
[3] Institute of Space Sciences,undefined
来源
Advances in Difference Equations | / 2018卷
关键词
Dual-mode; -dimensional Kadomtsev–Petviashvili; tanh-expansion method; Kudryashov expansion method; 35C08; 74J35;
D O I
暂无
中图分类号
学科分类号
摘要
Dual-mode (2+1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$(2+1)$\end{document}-dimensional Kadomtsev–Petviashvili (DMKP) equation is a new model which represents the spread of two simultaneously directional waves due to the involved term “utt(x,y,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$u_{tt}(x,y,t)$\end{document}” in its equation. We present the construction of DMKP and search for possible solutions. The innovative tanh-expansion method and Kudryashov technique will be utilized to find the necessary constraint conditions which guarantee the existence of soliton solutions to DMKP. Supportive 3D plots will be provided to validate our findings.
引用
收藏
相关论文
共 52 条
[1]  
Korsunsky S.V.(1994)Soliton solutions for a second-order KdV equation Phys. Lett. A 185 174-176
[2]  
Wazwaz A.M.(2017)Multiple soliton solutions and other exact solutions for a two-mode KdV equation Math. Methods Appl. Sci. 40 1277-1283
[3]  
Xiao Z.J.(2017)Multi-soliton solutions and Bäcklund transformation for a two-mode KdV equation in a fluid Waves Random Complex Media 27 1-14
[4]  
Tian B.(2011)A Hamiltonian model and soliton phenomenon for a two-mode KdV equation Rocky Mt. J. Math. 41 1273-1289
[5]  
Zhen H.L.(2010)Quasi-solitons of the two-mode Korteweg–de Vries equation Eur. Phys. J. Appl. Phys. 52 56-76
[6]  
Chai J.(2013)On wave solutions of a weakly nonlinear and weakly dispersive two-mode wave system Waves Random Complex Media 23 375-378
[7]  
Wu X.Y.(1999)New non-traveling solitary wave solutions for a second-order Korteweg–de Vries equation Z. Naturforsch. 54 a 1363-1371
[8]  
Lee C.T.(2017)Jacobi elliptic function solutions for a two-mode KdV equation J. King Saud Univ., Sci. 90 371-377
[9]  
Liu J.L.(2016)A two-mode Burgers equation of weak shock waves in a fluid: multiple kink solutions and other exact solutions Int. J. Appl. Comput. Math. 90 1619-1626
[10]  
Lee C.C.(2017)Two-mode Sharma–Tasso–Olver equation and two-mode fourth-order Burgers equation: multiple kink solutions Alex. Eng. J. 91 822-825