On the b-Coloring of Cographs and P4-Sparse Graphs

被引:0
作者
Flavia Bonomo
Guillermo Durán
Frederic Maffray
Javier Marenco
Mario Valencia-Pabon
机构
[1] Universidad de Buenos Aires,CONICET and Departamento de Computación, FCEN
[2] Universidad de Buenos Aires,CONICET and Departamento de Matemática, FCEN
[3] U. de Chile,Departamento de Ingeniería Industrial, FCFM
[4] C.N.R.S.,Instituto de Ciencias
[5] Laboratoire G-SCOP,undefined
[6] Universidad Nacional de General Sarmiento,undefined
[7] LIPN,undefined
[8] Université Paris-Nord,undefined
来源
Graphs and Combinatorics | 2009年 / 25卷
关键词
b-coloring; b-continuity; b-monotonicity; cographs; -sparse graphs;
D O I
暂无
中图分类号
学科分类号
摘要
A b-coloring of a graph is a coloring such that every color class admits a vertex adjacent to at least one vertex receiving each of the colors not assigned to it. The b-chromatic number of a graph G, denoted by χb(G), is the maximum number t such that G admits a b-coloring with t colors. A graph G is b-continuous if it admits a b-coloring with t colors, for every \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t = \chi(G), \ldots, \chi_b(G)$$\end{document} . We define a graph G to be b-monotonic if χb(H1) ≥ χb(H2) for every induced subgraph H1 of G, and every induced subgraph H2 of H1. In this work, we prove that P4-sparse graphs (and, in particular, cographs) are b-continuous and b-monotonic. Besides, we describe a dynamic programming algorithm to compute the b-chromatic number in polynomial time within these graph classes.
引用
收藏
页码:153 / 167
页数:14
相关论文
共 25 条
[1]  
Bodlaender H.L.(1989)Achromatic number is NP-complete for cographs and interval graphs Inf. Proc. Lett. 31 135-138
[2]  
Corneil D.(1984)Cographs: recognition, applications and algorithms Cong. Numer. 43 249-258
[3]  
Perl Y.(2005)On approximating the b-chromatic number Disc. Appl. Math. 146 618-622
[4]  
Stewart L.(2003)The b-chromatic number of some power graphs Disc. Math. & Theor. Comput. Sci. 6 45-54
[5]  
Corteel S.(2005)On the b-dominating coloring of graphs Disc. App. Math. 152 176-186
[6]  
Valencia-Pabon M.(1999)The b-chromatic number of a graph Disc. Appl. Math. 91 127-141
[7]  
Vera J.(1992)A tree representation for P 4-sparse graphs Disc. Appl. Math. 35 115-129
[8]  
Effantin B.(1995)Linear-time optimization algorithms for p 4-sparse graphs Disc. Appl. Math. 61 155-175
[9]  
Kheddouci H.(1993)Maximum covering with D cliques Lect. Notes Comput. Sci. 710 319-328
[10]  
Hoàng C.T.(2006)Bounds for the b-chromatic number of some families of graphs Dis. Math 306 617-623