Global symmetries of Quaternion-Kähler N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 supersymmetric mechanics

被引:0
作者
Evgeny Ivanov
Luca Mezincescu
机构
[1] Bogoliubov Laboratory of Theoretical Physics,Department of Physics
[2] JINR,undefined
[3] Moscow Institute of Physics and Technology,undefined
[4] University of Miami,undefined
关键词
Field Theories in Lower Dimensions; Extended Supersymmetry; Sigma Mod- els;
D O I
10.1007/JHEP01(2021)081
中图分类号
学科分类号
摘要
We analyze the global symmetries of N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 supersymmetric mechanics in- volving 4n-dimensional Quaternion-Kähler (QK) 1D sigma models on projective spaces ℍHn and ℍPn as the bosonic core. All Noether charges associated with global worldline symmetries are shown to vanish as a result of equations of motion, which implies that we deal with a severely constrained hamiltonian system. The complete hamiltonian analysis of the bosonic sector is performed.
引用
收藏
相关论文
共 35 条
[1]  
Nicolai H(1976) = 4 J. Phys. A 9 1497-undefined
[2]  
Witten E(1981) = 4 Nucl. Phys. B 188 513-undefined
[3]  
Cooper F(1995) = 4 Phys. Rept. 251 267-undefined
[4]  
Khare A(1990) = 2 Class. Quant. Grav. 7 427-undefined
[5]  
Sukhatme U(2012) = 4 Int. J. Mod. Phys. A 27 1230024-undefined
[6]  
Coles RA(2012)undefined J. Phys. A 45 173001-undefined
[7]  
Papadopoulos G(2017)undefined JHEP 12 016-undefined
[8]  
Ivanov EA(2003)undefined JHEP 09 073-undefined
[9]  
Smilga AV(1986)undefined Nucl. Phys. B 271 402-undefined
[10]  
Fedoruk S(2000)undefined Nucl. Phys. B 576 543-undefined