ParadisEO-MO: from fitness landscape analysis to efficient local search algorithms

被引:0
作者
J. Humeau
A. Liefooghe
E. -G. Talbi
S. Verel
机构
[1] École des Mines de Douai,Département IA
[2] DOLPHIN Research Team,Inria Lille
[3] Université Lille 1,Nord Europe
[4] Université Nice Sophia Antipolis,Laboratoire LIFL, UMR CNRS 8022
来源
Journal of Heuristics | 2013年 / 19卷
关键词
Local search; Metaheuristic; Fitness landscapes ; Conceptual unified model; Algorithm design and analysis; Software framework ;
D O I
暂无
中图分类号
学科分类号
摘要
This paper presents a general-purpose software framework dedicated to the design, the analysis and the implementation of local search metaheuristics: ParadisEO-MO. A substantial number of single solution-based local search metaheuristics has been proposed so far, and an attempt of unifying existing approaches is here presented. Based on a fine-grained decomposition, a conceptual model is proposed and is validated by regarding a number of state-of-the-art methodologies as simple variants of the same structure. This model is then incorporated into the ParadisEO-MO software framework. This framework has proven its efficiency and high flexibility by enabling the resolution of many academic and real-world optimization problems from science and industry.
引用
收藏
页码:881 / 915
页数:34
相关论文
共 88 条
  • [1] Adenso-Díaz B(2006)Fine-tuning of algorithms using fractional experimental designs and local search Oper. Res. 54 99-114
  • [2] Laguna M(2003)Statiscal properties of neutral evolution J. Mol. Evol. 57 103-119
  • [3] Bastolla U(2011)LocalSolver 1.x: a black-box local-search solver for 0–1 programming Q. J. Oper. Res. 9 299-316
  • [4] Porto M(2011)Metaheuristics based de novo protein sequencing: a new approach Appl. Soft Comput. 11 2271-2278
  • [5] Roman HE(2004)ParadisEO: a framework for the reusable design of parallel and distributed metaheuristics J. Heuristics 10 357-380
  • [6] Vendruscolo M(1985)A thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm J. Optim. Theory Appl. 45 41-51
  • [7] Benoist T(1993)The noising method: a new method for combinatorial optimization Oper. Res. Lett. 14 133-137
  • [8] Estellon B(1991)Global optimization and simulated annealing Math. Program. 50 367-393
  • [9] Gardi F(1989)A probabilistic heuristic for a computationally difficult set covering problem Oper. Res. Lett. 8 67-71
  • [10] Megel R(1995)Greedy randomized adaptive search procedures J. Glob. Optim. 6 109-133