Quillen connection and the uniformization of Riemann surfaces

被引:0
|
作者
Indranil Biswas
Filippo Francesco Favale
Gian Pietro Pirola
Sara Torelli
机构
[1] Tata Institute of Fundamental Research,School of Mathematics
[2] Universit\`a di Pavia,Dipartimento di Matematica
[3] Leibniz Universität Hannover,Institut für Algebraische Geometrie
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2022年 / 201卷
关键词
Uniformization; Projective structure; Quillen connection; Torsor; 30F10; 14H15; 53C07; 53B10;
D O I
暂无
中图分类号
学科分类号
摘要
The Quillen connection on L⟶Mg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal L}\, \longrightarrow \, {\mathcal M}_g$$\end{document}, where L∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal L}^*$$\end{document} is the Hodge line bundle over the moduli stack of smooth complex projective curves curves Mg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}_g$$\end{document}, g≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g\, \ge \, 5$$\end{document}, is uniquely determined by the condition that its curvature is the Weil–Petersson form on Mg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}_g$$\end{document}. The bundle of holomorphic connections on L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal L}$$\end{document} has a unique holomorphic isomorphism with the bundle on Mg\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal M}_g$$\end{document} given by the moduli stack of projective structures. This isomorphism takes the C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty$$\end{document} section of the first bundle given by the Quillen connection on L\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal L}$$\end{document} to the C∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C^\infty$$\end{document} section of the second bundle given by the uniformization theorem. Therefore, any one of these two sections determines the other uniquely.
引用
收藏
页码:2825 / 2835
页数:10
相关论文
共 50 条
  • [1] Quillen connection and the uniformization of Riemann surfaces
    Biswas, Indranil
    Favale, Filippo Francesco
    Pirola, Gian Pietro
    Torelli, Sara
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2022, 201 (06) : 2825 - 2835
  • [2] A canonical connection on bundles on Riemann surfaces and Quillen connection on the theta bundle
    Biswas, Indranil
    Hurtubise, Jacques
    ADVANCES IN MATHEMATICS, 2021, 389
  • [3] The Uniformization of Riemann Surfaces
    Popescu-Pampu, Patrick
    WHAT IS THE GENUS?, 2016, 2162 : 69 - 70
  • [4] Uniformization of Riemann surfaces revisited
    Anghel, Cipriana
    Stan, Rares
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2022, 62 (03) : 603 - 615
  • [5] Uniformization of Riemann surfaces revisited
    Cipriana Anghel
    Rareş Stan
    Annals of Global Analysis and Geometry, 2022, 62 : 603 - 615
  • [6] Degenerating Riemann Surfaces and the Quillen Metric
    Eriksson, Dennis
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2013, 2013 (02) : 347 - 361
  • [7] Henri Poincare and the Uniformization of Riemann Surfaces
    Beguin, Francois
    HENRI POINCARE, 1912-2012, 2015, 67 : 193 - 230
  • [8] Uniformization of some Riemann surfaces with nodes
    Zindinova, NS
    SIBERIAN MATHEMATICAL JOURNAL, 1996, 37 (05) : 929 - 935
  • [9] FAMILIES OF RIEMANN SURFACES, UNIFORMIZATION AND ARITHMETICITY
    Gonzalez-Diez, Gabino
    Reyes-Carocca, Sebastian
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 370 (03) : 1529 - 1549
  • [10] Uniformization of conformal involutions on stable Riemann surfaces
    Raquel Díaz
    Ignacio Garijo
    Rubéen A. Hidalgo
    Israel Journal of Mathematics, 2011, 186 : 297 - 331