Holographic Roberge-Weiss transitions

被引:0
作者
Gert Aarts
S. Prem Kumar
James Rafferty
机构
[1] Swansea University,Department of Physics
来源
Journal of High Energy Physics | / 2010卷
关键词
Gauge-gravity correspondence; Lattice QCD; AdS-CFT Correspondence;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 4 $\end{document} SYM coupled to fundamental flavours at nonzero imaginary quark chemical potential in the strong coupling and large N limit, using gauge/gravity duality applied to the D3-D7 system, treating flavours in the probe approximation. The interplay between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {\mathbb{Z}_N} $\end{document} symmetry and the imaginary chemical potential yields a series of first-order Roberge-Weiss transitions. An additional thermal transition separates phases where quarks are bound/ unbound into mesons. This results in a set of Roberge-Weiss endpoints: we establish that these are triple points, determine the Roberge-Weiss temperature, give the curvature of the phase boundaries and confirm that the theory is analytic in μ2 when μ2 ≈ 0.
引用
收藏
相关论文
共 141 条
  • [1] Maldacena JM(1998)The large- Adv. Theor. Math. Phys. 2 231-undefined
  • [2] Witten E(1998) limit of superconformal field theories and supergravity Adv. Theor. Math. Phys. 2 505-undefined
  • [3] Witten E(1998)Anti-de Sitter space, thermal phase transition, and confinement in gauge theories Adv. Theor. Math. Phys. 2 253-undefined
  • [4] Gubser SS(1999)Anti-de Sitter space and holography Nucl. Phys. B 551 667-undefined
  • [5] Behrndt K(1999)Thermodynamics of spinning D3-branes Nucl. Phys. B 553 317-undefined
  • [6] Cvetič M(1999)Non-extreme black holes of five dimensional N = 2 AdS supergravity Phys. Rev. D 60 064018-undefined
  • [7] Sabra WA(1999)Charged AdS black holes and catastrophic holography JHEP 04 024-undefined
  • [8] Chamblin A(2000)Phases of R-charged black holes, spinning branes and strongly coupled gauge theories Nucl. Phys. B 573 349-undefined
  • [9] Emparan R(2004)The Hagedorn transition, deconfinement and N = 4 SYM theory Adv. Theor. Math. Phys. 8 603-undefined
  • [10] Johnson CV(2006)The Hagedorn/deconfinement phase transition in weakly coupled large- JHEP 09 027-undefined