The universality of equivariant complex bordism

被引:0
|
作者
Michael Cole
J.P.C. Greenlees
I. Kriz
机构
[1] Department of Mathematics,
[2] Hofstra University,undefined
[3] Hempstead,undefined
[4] NY 11549,undefined
[5] USA (e-mail: matmzc@hofstra.edu) ,undefined
[6] School of Mathematics and Statistics,undefined
[7] Hicks Building,undefined
[8] Sheffield S3 7RH,undefined
[9] UK (e-mail: j.greenlees@sheffield.ac.uk) ,undefined
[10] Department of Mathematics,undefined
[11] University of Michigan,undefined
[12] Ann Arbor,undefined
[13] MI 48109,undefined
[14] USA (e-mail: ikriz@math.lsa.umich.edu) ,undefined
来源
Mathematische Zeitschrift | 2002年 / 239卷
关键词
Vector Bundle; Complex Vector; Equivariant Cohomology; Cohomology Theory; Complex Vector Bundle;
D O I
暂无
中图分类号
学科分类号
摘要
We show that if A is an abelian compact Lie group, all A-equivariant complex vector bundles are orientable over a complex orientable equivariant cohomology theory. In the process, we calculate the complex orientable homology and cohomology of all complex Grassmannians.
引用
收藏
页码:455 / 475
页数:20
相关论文
共 50 条
  • [21] Equivariant cohomology of torus orbifolds
    Darby, Alastair
    Kuroki, Shintaro
    Song, Jongbaek
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2022, 74 (02): : 299 - 328
  • [22] On the localization formula in equivariant cohomology
    Pedroza, Andres
    Tu, Loring W.
    TOPOLOGY AND ITS APPLICATIONS, 2007, 154 (07) : 1493 - 1501
  • [23] Equivariant extensions of categorical groups
    Garzón, AR
    Del Río, A
    APPLIED CATEGORICAL STRUCTURES, 2005, 13 (02) : 131 - 140
  • [24] Arc Spaces and Equivariant Cohomology
    Anderson D.
    Stapledon A.
    Transformation Groups, 2013, 18 (4) : 931 - 969
  • [25] Equivariant cohomology for differentiable stacks
    Barbosa-Torres, Luis Alejandro
    Neumann, Frank
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 160
  • [26] A new equivariant cohomology ring
    Bohui Chen
    Cheng-Yong Du
    Tiyao Li
    Mathematische Zeitschrift, 2020, 295 : 1163 - 1182
  • [27] Equivariant homology and cohomology of groups
    Inassaridze, H
    TOPOLOGY AND ITS APPLICATIONS, 2005, 153 (01) : 66 - 89
  • [28] Equivariant periodic cyclic homology
    Voigt, Christian
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2007, 6 (04) : 689 - 763
  • [29] Equivariant quantum Schubert polynomials
    Anderson, Dave
    Chen, Linda
    ADVANCES IN MATHEMATICS, 2014, 254 : 300 - 330
  • [30] A new equivariant cohomology ring
    Chen, Bohui
    Du, Cheng-Yong
    Li, Tiyao
    MATHEMATISCHE ZEITSCHRIFT, 2020, 295 (3-4) : 1163 - 1182