The universality of equivariant complex bordism

被引:0
|
作者
Michael Cole
J.P.C. Greenlees
I. Kriz
机构
[1] Department of Mathematics,
[2] Hofstra University,undefined
[3] Hempstead,undefined
[4] NY 11549,undefined
[5] USA (e-mail: matmzc@hofstra.edu) ,undefined
[6] School of Mathematics and Statistics,undefined
[7] Hicks Building,undefined
[8] Sheffield S3 7RH,undefined
[9] UK (e-mail: j.greenlees@sheffield.ac.uk) ,undefined
[10] Department of Mathematics,undefined
[11] University of Michigan,undefined
[12] Ann Arbor,undefined
[13] MI 48109,undefined
[14] USA (e-mail: ikriz@math.lsa.umich.edu) ,undefined
来源
Mathematische Zeitschrift | 2002年 / 239卷
关键词
Vector Bundle; Complex Vector; Equivariant Cohomology; Cohomology Theory; Complex Vector Bundle;
D O I
暂无
中图分类号
学科分类号
摘要
We show that if A is an abelian compact Lie group, all A-equivariant complex vector bundles are orientable over a complex orientable equivariant cohomology theory. In the process, we calculate the complex orientable homology and cohomology of all complex Grassmannians.
引用
收藏
页码:455 / 475
页数:20
相关论文
共 50 条
  • [11] Equivariant elliptic genera
    Waelder, Robert
    PACIFIC JOURNAL OF MATHEMATICS, 2008, 235 (02) : 345 - 377
  • [12] ON EQUIVARIANT DENDRIFORM ALGEBRAS
    Das, Apurba
    Saha, Ripan
    COLLOQUIUM MATHEMATICUM, 2021, 164 (02) : 283 - 303
  • [13] Twisted Equivariant Matter
    Daniel S. Freed
    Gregory W. Moore
    Annales Henri Poincaré, 2013, 14 : 1927 - 2023
  • [14] Equivariant Novikov inequalities
    Braverman, M
    Farber, M
    K-THEORY, 1997, 12 (04): : 293 - 318
  • [15] Equivariant acyclic maps
    Mukherjee, A
    Naolekar, AC
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (12) : 3747 - 3752
  • [16] Singular equivariant asymptotics and the momentum map. Residue formulae in equivariant cohomology
    Ramacher, Pablo
    JOURNAL OF SYMPLECTIC GEOMETRY, 2016, 14 (02) : 449 - 539
  • [17] CONFORMAL BLOCKS AND EQUIVARIANT COHOMOLOGY
    Rimanyi, Richard
    Schechtman, Vadim
    Varchenko, Alexander
    MOSCOW MATHEMATICAL JOURNAL, 2011, 11 (03) : 561 - 581
  • [18] Localization formulas in equivariant cohomology
    Paradan, PE
    COMPOSITIO MATHEMATICA, 1999, 117 (03) : 243 - 293
  • [19] A note on equivariant Euler characteristic
    Mukherjee, A
    Naolekar, AC
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 1997, 107 (02): : 163 - 167
  • [20] Hopf cyclic cohomology and Chern character of equivariant K-theories
    I. M. Nikonov
    G. I. Sharygin
    Russian Journal of Mathematical Physics, 2015, 22 : 379 - 388