Monodromies and poincaré series of quasihomogeneous complete intersections

被引:0
作者
W. Ebeling
S. M. Gusein-Zade
机构
[1] Universität Hannover,Institut für Mathematik
[2] Moscow State University,Faculty of Mechanics and Mathematics
来源
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg | 2004年 / 74卷
关键词
quasihomogeneous complete intersection; Poincaré series; zeta function of monodromy;
D O I
暂无
中图分类号
学科分类号
摘要
We give a formula connecting the Saito duals of the reduced zeta functions of the monodromies of defining equations of a quasihomogeneous complete intersection, the Poincaré series of its coordinate ring, and orbit invariants with respect to the natural ℂ*-action.
引用
收藏
页码:175 / 179
页数:4
相关论文
共 10 条
[1]  
Gusein-Zade S. M.(1999)On the monodromy of a plane curve singularity and the Poincaré series of the ring of functions on the curve Funktsional. Anal, i Prilozhen. 33 66-68
[2]  
Delgado F.(2003)The Alexander polynomial of a plane curve singularity via the ring of functions on it Duke Math. J. 117 125-156
[3]  
Campillo A.(2002)Poincaré series and monodromy of a two-dimensional quasihomogeneous hypersurface singularity Manuscripta math. 107 271-282
[4]  
Campillo A.(2002)Poincaré series and zeta function of the monodromy of a quasihomogeneous singularity Math. Res. Lett. 9 509-513
[5]  
Delgado F.(1998)Duality for regular systems of weights Asian J. Math. 2 983-1047
[6]  
Gusein-Zade S. M.(undefined)undefined undefined undefined undefined-undefined
[7]  
Ebeling W.(undefined)undefined undefined undefined undefined-undefined
[8]  
Ebeling W.(undefined)undefined undefined undefined undefined-undefined
[9]  
Gusein-Zade S. M.(undefined)undefined undefined undefined undefined-undefined
[10]  
Saito K.(undefined)undefined undefined undefined undefined-undefined