Optimal bounds for two Seiffert-like means by arithmetic mean and harmonic mean

被引:0
|
作者
Ling Zhu
Branko Malešević
机构
[1] Zhejiang Gongshang University,Department of Mathematics
[2] University of Belgrade,Faculty of Electrical Engineering
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2023年 / 117卷
关键词
Means inequalities; Seiffert-like means; Arithmetic mean; Harmonic mean; 33B10; 26D15;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, using the monotone form of L’Hospital’s rule, its extension, and the criterion for the monotonicity of the different sign judgment function of the front and back breaking coefficient signs of the power series of a single function, we establish the exponential inequalities with all nonzero number p∈R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p\in \mathbb {R} $$\end{document} for two Seiffert-like means, called tangent mean and hyperbolic sine mean, bounded by arithmetic mean A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{A}$$\end{document} and harmonic mean H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{H}$$\end{document} . Meanwhile we show two double inequalities for these two Seiffert-like means bounded by the weighted geometric mean of H\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{H}$$\end{document} and A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\textbf{A}$$\end{document} .
引用
收藏
相关论文
共 50 条
  • [1] Optimal bounds for two Seiffert-like means by arithmetic mean and harmonic mean
    Zhu, Ling
    Malesevic, Branko
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2023, 117 (02)
  • [2] Optimal bounds for Seiffert-like elliptic integral mean by harmonic, geometric, and arithmetic means
    Fan Zhang
    Weimao Qian
    Hui Zuo Xu
    Journal of Inequalities and Applications, 2022
  • [3] Optimal bounds for Seiffert-like elliptic integral mean by harmonic, geometric, and arithmetic means
    Zhang, Fan
    Qian, Weimao
    Xu, Hui Zuo
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2022, 2022 (01)
  • [4] OPTIMAL BOUNDS OF THE ARITHMETIC MEAN IN TERMS OF NEW SEIFFERT-LIKE MEANS
    Nowicka, Monika
    Witkowski, Alfred
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (01): : 383 - 392
  • [5] New Bounds for Arithmetic Mean by the Seiffert-like Means
    Zhu, Ling
    MATHEMATICS, 2022, 10 (11)
  • [6] Refinements of bounds for the arithmetic mean by new Seiffert-like means
    Qian, Wei-Mao
    Zhao, Tie-Hong
    Lv, Yu-Pei
    AIMS MATHEMATICS, 2021, 6 (08): : 9036 - 9047
  • [7] Optimal bounds of exponential type for arithmetic mean by Seiffert-like mean and centroidal mean
    Ling Zhu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [8] Optimal bounds of exponential type for arithmetic mean by Seiffert-like mean and centroidal mean
    Zhu, Ling
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (01)
  • [9] Sharp Power Mean Bounds for Two Seiffert-like Means
    Yang, Zhenhang
    Zhang, Jing
    AXIOMS, 2023, 12 (10)
  • [10] The Optimal Convex Combination Bounds of Arithmetic and Harmonic Means for the Seiffert's Mean
    Chu, Yu-Ming
    Qiu, Ye-Fang
    Wang, Miao-Kun
    Wang, Gen-Di
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2010,