Pointwise error estimate in difference setting for the two-dimensional nonlinear fractional complex Ginzburg-Landau equation

被引:0
|
作者
Qifeng Zhang
Jan S. Hesthaven
Zhi-zhong Sun
Yunzhu Ren
机构
[1] Zhejiang Sci-Tech University,Department of Mathematics
[2] École Polytechnique Fédérale de Lausanne (EPFL),SB
[3] Southeast University,MATH
来源
Advances in Computational Mathematics | 2021年 / 47卷
关键词
Fractional Ginzburg-Landau equation; Difference scheme; Pointwise error estimate; Stability; Convergence; 65M06; 65M12; 26A33; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a three-level linearized implicit difference scheme for the two-dimensional spatial fractional nonlinear complex Ginzburg-Landau equation. We prove that the difference scheme is stable and convergent under mild conditions. The optimal convergence order O(τ2+hx2+hy2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(\tau ^{2}+{h_{x}^{2}}+{h_{y}^{2}})$\end{document} is obtained in the pointwise sense by developing a new two-dimensional fractional Sobolev imbedding inequality based on the work in Kirkpatrick et al. (Commun. Math. Phys. 317, 563–591 2013), an energy argument and careful attention to the nonlinear term. Numerical examples are presented to verify the validity of the theoretical results for different choices of the fractional orders α and β.
引用
收藏
相关论文
共 50 条
  • [41] Nucleation of spatiotemporal structures from defect turbulence in the two-dimensional complex Ginzburg-Landau equation
    Liu, Weigang
    Tauber, Uwe C.
    PHYSICAL REVIEW E, 2019, 100 (05)
  • [42] Two-dimensional discrete Ginzburg-Landau solitons
    Efremidis, Nikolaos K.
    Christodoulides, Demetrios N.
    Hizanidis, Kyriakos
    PHYSICAL REVIEW A, 2007, 76 (04):
  • [43] High-dimensional nonlinear Ginzburg-Landau equation with fractional Laplacian: Discretization and simulations
    Du, Rui
    Wang, Yanyan
    Hao, Zhaopeng
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 102
  • [44] New Exact Solutions of the Fractional Complex Ginzburg-Landau Equation
    Huang, Chun
    Li, Zhao
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
  • [45] Fast iterative solvers for the two-dimensional spatial fractional Ginzburg-Landau equations
    Zhang, Min
    Zhang, Guo-Feng
    APPLIED MATHEMATICS LETTERS, 2021, 121
  • [46] An efficient fourth-order in space difference scheme for the nonlinear fractional Ginzburg-Landau equation
    Wang, Pengde
    Huang, Chengming
    BIT NUMERICAL MATHEMATICS, 2018, 58 (03) : 783 - 805
  • [47] An unconditionally stable linearized difference scheme for the fractional Ginzburg-Landau equation
    He, Dongdong
    Pan, Kejia
    NUMERICAL ALGORITHMS, 2018, 79 (03) : 899 - 925
  • [48] An unconditionally stable linearized difference scheme for the fractional Ginzburg-Landau equation
    Dongdong He
    Kejia Pan
    Numerical Algorithms, 2018, 79 : 899 - 925
  • [49] Difference Methods for Computing the Ginzburg-Landau Equation in Two Dimensions
    Xu, Qiubin
    Chang, Qianshun
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2011, 27 (03) : 507 - 528
  • [50] HOC-ADI schemes for two-dimensional Ginzburg-Landau equation in superconductivity
    Kong, Linghua
    Luo, Yiyang
    Wang, Lan
    Chen, Meng
    Zhao, Zhi
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2021, 190 : 494 - 507