Pointwise error estimate in difference setting for the two-dimensional nonlinear fractional complex Ginzburg-Landau equation

被引:0
|
作者
Qifeng Zhang
Jan S. Hesthaven
Zhi-zhong Sun
Yunzhu Ren
机构
[1] Zhejiang Sci-Tech University,Department of Mathematics
[2] École Polytechnique Fédérale de Lausanne (EPFL),SB
[3] Southeast University,MATH
来源
Advances in Computational Mathematics | 2021年 / 47卷
关键词
Fractional Ginzburg-Landau equation; Difference scheme; Pointwise error estimate; Stability; Convergence; 65M06; 65M12; 26A33; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a three-level linearized implicit difference scheme for the two-dimensional spatial fractional nonlinear complex Ginzburg-Landau equation. We prove that the difference scheme is stable and convergent under mild conditions. The optimal convergence order O(τ2+hx2+hy2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(\tau ^{2}+{h_{x}^{2}}+{h_{y}^{2}})$\end{document} is obtained in the pointwise sense by developing a new two-dimensional fractional Sobolev imbedding inequality based on the work in Kirkpatrick et al. (Commun. Math. Phys. 317, 563–591 2013), an energy argument and careful attention to the nonlinear term. Numerical examples are presented to verify the validity of the theoretical results for different choices of the fractional orders α and β.
引用
收藏
相关论文
共 50 条
  • [31] The Inviscid Limit of the Fractional Complex Ginzburg-Landau Equation
    Wang, Lijun
    Li, Jingna
    Xia, Li
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2016, 17 (06) : 333 - 341
  • [32] Defect statistics in the two-dimensional complex Ginzburg-Landau model
    Mazenko, GF
    PHYSICAL REVIEW E, 2001, 64 (01): : 11 - 016110
  • [33] Recurrent motion in the fractional complex Ginzburg-Landau equation
    Cheng, Ming
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (11)
  • [34] An implicit midpoint difference scheme for the fractional Ginzburg-Landau equation
    Wang, Pengde
    Huang, Chengming
    JOURNAL OF COMPUTATIONAL PHYSICS, 2016, 312 : 31 - 49
  • [35] Global existence theory for the two-dimensional derivative Ginzburg-Landau equation
    Cao, ZC
    Guo, BL
    Wang, BX
    CHINESE SCIENCE BULLETIN, 1998, 43 (05): : 393 - 395
  • [36] EFFICIENT NUMERICAL SCHEMES FOR TWO-DIMENSIONAL GINZBURG-LANDAU EQUATION IN SUPERCONDUCTIVITY
    Kong, Linghua
    Kuang, Liqun
    Wang, Tingchun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (12): : 6325 - 6347
  • [38] Global existence theory for the two-dimensional derivative Ginzburg-Landau equation
    CAO Zhenchao+1
    2. Institute of Applied Physics and Computational Mathematics
    Chinese Science Bulletin, 1998, (05) : 393 - 395
  • [39] Pointwise error estimate of an alternating direction implicit difference scheme for two-dimensional time-fractional diffusion equation
    Wang, Yue
    Chen, Hu
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2021, 99 : 155 - 161
  • [40] Model Reduction of the Nonlinear Complex Ginzburg-Landau Equation
    Ilak, Milos
    Bagheri, Shervin
    Brandt, Luca
    Rowley, Clarence W.
    Henningson, Dan S.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (04): : 1284 - 1302