Pointwise error estimate in difference setting for the two-dimensional nonlinear fractional complex Ginzburg-Landau equation

被引:0
|
作者
Qifeng Zhang
Jan S. Hesthaven
Zhi-zhong Sun
Yunzhu Ren
机构
[1] Zhejiang Sci-Tech University,Department of Mathematics
[2] École Polytechnique Fédérale de Lausanne (EPFL),SB
[3] Southeast University,MATH
来源
Advances in Computational Mathematics | 2021年 / 47卷
关键词
Fractional Ginzburg-Landau equation; Difference scheme; Pointwise error estimate; Stability; Convergence; 65M06; 65M12; 26A33; 35R11;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose a three-level linearized implicit difference scheme for the two-dimensional spatial fractional nonlinear complex Ginzburg-Landau equation. We prove that the difference scheme is stable and convergent under mild conditions. The optimal convergence order O(τ2+hx2+hy2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(\tau ^{2}+{h_{x}^{2}}+{h_{y}^{2}})$\end{document} is obtained in the pointwise sense by developing a new two-dimensional fractional Sobolev imbedding inequality based on the work in Kirkpatrick et al. (Commun. Math. Phys. 317, 563–591 2013), an energy argument and careful attention to the nonlinear term. Numerical examples are presented to verify the validity of the theoretical results for different choices of the fractional orders α and β.
引用
收藏
相关论文
共 50 条
  • [21] Pointwise error estimates of a linearized difference scheme for strongly coupled fractional Ginzburg-Landau equations
    Pan, Kejia
    Jin, Xianlin
    He, Dongdong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (02) : 512 - 535
  • [22] WEAK SOLUTIONS TO THE TWO-DIMENSIONAL DERIVATIVE GINZBURG-LANDAU EQUATION
    郭伯灵
    王碧祥
    Acta Mathematicae Applicatae Sinica(English Series), 1999, (01) : 1 - 8
  • [23] Weak solutions to the two-dimensional derivative Ginzburg-Landau equation
    Guo Boling
    Wang Bixiang
    Acta Mathematicae Applicatae Sinica, 1999, 15 (1) : 1 - 8
  • [24] Stable vortex solitons in the two-dimensional Ginzburg-Landau equation
    Crasovan, LC
    Malomed, BA
    Mihalache, D
    PHYSICAL REVIEW E, 2001, 63 (01):
  • [25] Uniqueness and Inviscid Limits of Solutions for the Complex Ginzburg-Landau Equation in a Two-Dimensional Domain
    Takayoshi Ogawa
    Tomomi Yokota
    Communications in Mathematical Physics, 2004, 245 : 105 - 121
  • [26] Stability analysis, optical solitons and complexitons of the two-dimensional complex Ginzburg-Landau equation
    Mao, Jin-Jin
    Tian, Shou-Fu
    Zou, Li
    Zhang, Tian-Tian
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2019, 33 (09) : 1224 - 1238
  • [27] Uniqueness and inviscid limits of solutions for the complex Ginzburg-Landau equation in a two-dimensional domain
    Ogawa, T
    Yokota, T
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 245 (01) : 105 - 121
  • [28] Controlling turbulence in the complex Ginzburg-Landau equation .2. Two-dimensional systems
    Battogtokh, D
    Preusser, A
    Mikhailov, A
    PHYSICA D, 1997, 106 (3-4): : 327 - 362
  • [29] Error estimate of Fourier pseudo-spectral method for multidimensional nonlinear complex fractional Ginzburg-Landau equations
    Zeng, Wei
    Xiao, Aiguo
    Li, Xueyang
    APPLIED MATHEMATICS LETTERS, 2019, 93 : 40 - 45
  • [30] One- and two-dimensional modes in the complex Ginzburg-Landau equation with a trapping potential
    Mayteevarunyoo, Thawatchai
    Malomed, Boris A.
    Skryabin, Dmitry V.
    OPTICS EXPRESS, 2018, 26 (07): : 8849 - 8865