Tight-binding approach to penta-graphene

被引:0
作者
T. Stauber
J. I. Beltrán
J. Schliemann
机构
[1] Instituto de Ciencia de Materiales de Madrid,Departamento de Física Aplicada III
[2] CSIC,undefined
[3] GFMC and Instituto Pluridisciplinar,undefined
[4] Universidad Complutense de Madrid,undefined
[5] IMDEA Materials Institute,undefined
[6] C/Eric Kandel 2,undefined
[7] 28906 Getafe,undefined
[8] Madrid,undefined
[9] Spain ,undefined
[10] Institute for Theoretical Physics,undefined
[11] University of Regensburg,undefined
来源
Scientific Reports | / 6卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We introduce an effective tight-binding model to discuss penta-graphene and present an analytical solution. This model only involves the π-orbitals of the sp2-hybridized carbon atoms and reproduces the two highest valence bands. By introducing energy-dependent hopping elements, originating from the elimination of the sp3-hybridized carbon atoms, also the two lowest conduction bands can be well approximated - but only after the inclusion of a Hubbard onsite interaction as well as of assisted hopping terms. The eigenfunctions can be approximated analytically for the effective model without energy-dependent hopping elements and the optical absorption is discussed. We find large isotropic absorption ranging from 7.5% up to 24% for transitions at the Γ-point.
引用
收藏
相关论文
共 50 条
[31]   Solitons in superlattices: A tight-binding approach [J].
Tian, Q ;
Wu, CS .
PHYSICS LETTERS A, 1999, 262 (01) :83-85
[32]   Tight-binding description of graphene–BCN–graphene layered semiconductors [J].
Mahsa Ebrahimi ;
Ashkan Horri ;
Majid Sanaeepur ;
Mohammad Bagher Tavakoli .
Journal of Computational Electronics, 2020, 19 :62-69
[33]   From graphene to graphite: A general tight-binding approach for nanoribbon carrier transport [J].
Finkenstadt, Daniel ;
Pennington, G. ;
Mehl, M. J. .
PHYSICAL REVIEW B, 2007, 76 (12)
[34]   Magnetic Susceptibility and Neutron Scattering of Graphene in Antiferromagnetic State: a Tight-Binding Approach [J].
Sivabrata Sahu ;
S. K. Panda ;
G. C. Rout .
Journal of Superconductivity and Novel Magnetism, 2018, 31 :1857-1866
[35]   Magnetic Susceptibility and Neutron Scattering of Graphene in Antiferromagnetic State: a Tight-Binding Approach [J].
Sahu, Sivabrata ;
Panda, S. K. ;
Rout, G. C. .
JOURNAL OF SUPERCONDUCTIVITY AND NOVEL MAGNETISM, 2018, 31 (06) :1857-1866
[36]   Mode Space Approach for Tight-Binding Transport Simulation in Graphene Nanoribbon FETs [J].
Grassi, Roberto ;
Gnudi, Antonio ;
Gnani, Elena ;
Reggiani, Susanna ;
Baccarani, Giorgio .
IWCE-13: 2009 13TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ELECTRONICS, 2009, :96-+
[37]   Structure, energetics, and dynamics of penta-graphene nanoscrolls [J].
Teixeira, Mizraim B. ;
Azevedo, David ;
Machado, Leonardo D. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2025, 173
[38]   Structural superlubricity at homogenous interface of penta-graphene [J].
Zhang, Xinqi ;
Fan, Jiayi ;
Cui, Zichun ;
Cao, Tengfei ;
Shi, Junqin ;
Zhou, Feng ;
Liu, Weimin ;
Fan, Xiaoli .
FRICTION, 2024, :2004-2017
[39]   Energetic and electronic structure of penta-graphene nanoribbons [J].
Rajbanshi, Biplab ;
Sarkar, Sunandan ;
Mandal, Bikash ;
Sarkar, Pranab .
CARBON, 2016, 100 :118-125
[40]   Mechanical behaviours of penta-graphene and effects of hydrogenation [J].
Han, Tongwei ;
Gao, Shumin ;
Wang, Xueyi ;
Xuezi, Yiyang ;
Zhang, Xiaoyan .
MATERIALS RESEARCH EXPRESS, 2019, 6 (08)