Walls, lines, and spectral dualities in 3d gauge theories

被引:0
作者
Abhijit Gadde
Sergei Gukov
Pavel Putrov
机构
[1] California Institute of Technology,
来源
Journal of High Energy Physics | / 2014卷
关键词
Supersymmetric gauge theory; Solitons Monopoles and Instantons; Integrable Equations in Physics; Brane Dynamics in Gauge Theories;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we analyze various half-BPS defects in a general three dimensional \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 2 supersymmetric gauge theory \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{T} $\end{document}. They correspond to closed paths in SUSY parameter space and their tension is computed by evaluating period integrals along these paths. In addition to such defects, we also study wall defects that interpolate between \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{T} $\end{document} and its SL(2, \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathbb{Z} $\end{document}) transform by coupling the 3d theory to a 4d theory with S-duality wall. We propose a novel spectral duality between 3d gauge theories and integrable systems. This duality complements a similar duality discovered by Nekrasov and Shatashvili. As another application, for 3d \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 2 theories associated with knots and 3-manifolds we compute periods of (super) A-polynomial curves and relate the results with the spectrum of domain walls and line operators.
引用
收藏
相关论文
共 202 条
  • [1] Fendley P(1990)Integrable deformations and scattering matrices for the N = 2 supersymmetric discrete series Phys. Lett. B 243 257-undefined
  • [2] Mathur S(1991)N = 2 supersymmetric integrable models from affine Toda theories Nucl. Phys. B 348 66-undefined
  • [3] Vafa C(1991)Polytopes and solitons in integrable, N = 2 supersymmetric Landau-Ginzburg theories Nucl. Phys. B 358 571-undefined
  • [4] Warner N(1993)On classification of N = 2 supersymmetric theories Commun. Math. Phys. 158 569-undefined
  • [5] Fendley P(2012)Factorisation of N = 2 theories on the squashed 3-sphere JHEP 04 120-undefined
  • [6] Lerche W(2013)Chern-Simons theory and S-duality JHEP 05 109-undefined
  • [7] Mathur S(1995)Reducing S duality to T duality Phys. Rev. D 52 7161-undefined
  • [8] Warner N(1995)Topological reduction of 4D SYM to 2D σ-models Nucl. Phys. B 448 166-undefined
  • [9] Lerche W(1998)Notes on theories with 16 supercharges Nucl. Phys. Proc. Suppl. 67 158-undefined
  • [10] Warner N(1996)Two-dimensional black hole and singularities of CY manifolds Nucl. Phys. B 463 55-undefined