Dicer 1 of Candida albicans cleaves plant viral dsRNA in vitro and provides tolerance in plants against virus infection

被引:1
作者
Alam C.M. [1 ,2 ]
Jain G. [1 ]
Kausar A. [1 ]
Singh A.K. [1 ]
Mandal B. [3 ]
Varma A. [3 ]
Sharfuddin C. [2 ]
Chakraborty S. [1 ]
机构
[1] Molecular Virology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi
[2] Department of Botany, Patna University, Patna, 600005, Bihar
[3] Advanced Centre of Plant Virology, Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi
关键词
Candida albicans; Dicer; Fungus; Plants; Ribonulease III; RNA virus; Transgenic;
D O I
10.1007/s13337-019-00520-x
中图分类号
学科分类号
摘要
Most of the viral diseases of plants are caused by RNA viruses which drastically reduce crop yield. In order to generate resistance against RNA viruses infecting plants, we isolated the dicer 1 protein (CaDcr1), a member of RNAse III family (enzyme that cleaves double stranded RNA) from an opportunistic fungus Candida albicans. In vitro analysis revealed that the CaDcr1 cleaved dsRNA of the coat protein gene of cucumber mosaic virus (genus Cucumovirus, family Bromoviridae). Furthermore, we developed transgenic tobacco plants (Nicotiana tabacum cv. Xanthi) over-expressing expressing CaDcr1 by Agrobacterium mediated transformation. Transgenic tobacco lines were able to suppress infection of an Indian isolate of potato virus X (genus Potexvirus, family Alphaflexiviridae). The present study demonstrates that CaDcr1 can cleave double stranded replicative intermediate and provide tolerance to plant against RNA viruses. © 2019, Indian Virological Society.
引用
收藏
页码:237 / 244
页数:7
相关论文
共 38 条
[1]  
Aravind L., Koonin E.V., A natural classification of ribonucleases, Methods Enzymol, 341, pp. 3-28, (2001)
[2]  
Bernsteina D.A., Vyasa V.K., Weinberga D.E., Drinnenberga I.A., Bartela D.P., Finka G.R., Candida albicans Dicer (CaDcr1) is required for efficient ribosomal and spliceosomal RNA maturation, PNAS USA, 109, pp. 523-528, (2012)
[3]  
Braun B.R., van het Hoog M., d'Enfert C., Martchenko M., Dungan J., Kuo A., Inglis D.O., Uhl M.A., Hogues H., Berriman M., Lorenz M., Levitin A., Oberholzer U., Bachewich C., Harcus D., Marcil A., Dignard D., Iouk T., Rosa Z., Frangeul L., Tekaia F., Rutherford K., Wang E., Munro C.A., Bates S., Gow N.A., Hoyer L.L., Kohler G., Morschhauser J., Newport G., Znaidi S., Raymond M., Turcotte B., Sherlock G., Costanzo M., Ihmels J., Berman J., Sanglard D., Agabian N., Mitchell A.P., Johnson A.D., Wh
[4]  
Chanfreau G., Rotondo G., Legrain P., Jacquier A., Processing of a dicistronic small nucleolar RNA precursor by the RNA endonuclease Rnt1, EMBO J, 17, pp. 3726-3737, (1998)
[5]  
Conrad C., Rauhut R., Ribonuclease III: new sense from nuisance, Int J Biochem Cell Biol, 34, pp. 116-129, (2002)
[6]  
Dellaporta S.L., Wood J., Hicks J.B., A plant DNA minipreparation: version II, Plant Mol Biol Rep, 1, pp. 19-21, (1983)
[7]  
Ding S.W., Voinnet O., Antiviral immunity directed by small RNAs, Cell, 130, pp. 413-426, (2007)
[8]  
Drinnenberg I.A., Weinberg D.E., Xie K.T., Mower J.P., Wolfe K.H., Fink G.R., Bartel D.P., RNAi in budding yeast, Science, 326, pp. 544-550, (2009)
[9]  
Elela S.A., Igel H., Ares M., RNase III cleaves eukaryotic preribosomal RNA at a U3 snoRNP-dependent site, Cell, 85, pp. 115-124, (1996)
[10]  
Filippov V., Solovyev V., Filippova M., Gill S.S., A novel type of RNase III family proteins in eukaryotes, Gene, 245, pp. 213-221, (2000)