A gradient-type algorithm with backward inertial steps associated to a nonconvex minimization problem

被引:0
|
作者
Cristian Daniel Alecsa
Szilárd Csaba László
Adrian Viorel
机构
[1] Romanian Academy,Tiberiu Popoviciu Institute of Numerical Analysis
[2] Babes-Bolyai University,Department of Mathematics
[3] Technical University of Cluj-Napoca,Department of Mathematics
来源
Numerical Algorithms | 2020年 / 84卷
关键词
Inertial algorithm; Nonconvex optimization; Kurdyka-Łojasiewicz inequality; Convergence rate; 90C26; 90C30; 65K10;
D O I
暂无
中图分类号
学科分类号
摘要
We investigate an algorithm of gradient type with a backward inertial step in connection with the minimization of a nonconvex differentiable function. We show that the generated sequences converge to a critical point of the objective function, if a regularization of the objective function satisfies the Kurdyka-Łojasiewicz property. Further, we provide convergence rates for the generated sequences and the objective function values formulated in terms of the Łojasiewicz exponent. Finally, some numerical experiments are presented in order to compare our numerical scheme with some algorithms well known in the literature.
引用
收藏
页码:485 / 512
页数:27
相关论文
共 50 条
  • [1] A gradient-type algorithm with backward inertial steps associated to a nonconvex minimization problem
    Alecsa, Cristian Daniel
    Laszlo, Szilard Csaba
    Viorel, Adrian
    NUMERICAL ALGORITHMS, 2020, 84 (02) : 485 - 512
  • [2] An inertial forward-backward algorithm for the minimization of the sum of two nonconvex functions
    Bot, Radu Ioan
    Csetnek, Erno Robert
    Laszlo, Szilard Csaba
    EURO JOURNAL ON COMPUTATIONAL OPTIMIZATION, 2016, 4 (01) : 3 - 25
  • [3] A modified inertial proximal minimization algorithm for structured nonconvex and nonsmooth problem
    Xue, Zhonghui
    Ma, Qianfeng
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2024, 2024 (01):
  • [4] On Linear Convergence of Gradient-Type Minimization Algorithms
    M. Gaviano
    D. Lera
    Journal of Optimization Theory and Applications, 1998, 98 : 475 - 487
  • [5] On linear convergence of gradient-type minimization algorithms
    Gaviano, M
    Lera, D
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 98 (02) : 475 - 487
  • [6] A Bregman inertial forward-reflected-backward method for nonconvex minimization
    Wang, Xianfu
    Wang, Ziyuan
    arXiv, 2022,
  • [7] A Bregman inertial forward-reflected-backward method for nonconvex minimization
    Xianfu Wang
    Ziyuan Wang
    Journal of Global Optimization, 2024, 89 : 327 - 354
  • [8] A Bregman inertial forward-reflected-backward method for nonconvex minimization
    Wang, Xianfu
    Wang, Ziyuan
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 89 (02) : 327 - 354
  • [9] Convergence rates for an inertial algorithm of gradient type associated to a smooth non-convex minimization
    Laszlo, Szilard Csaba
    MATHEMATICAL PROGRAMMING, 2021, 190 (1-2) : 285 - 329
  • [10] Convergence rates for an inertial algorithm of gradient type associated to a smooth non-convex minimization
    Szilárd Csaba László
    Mathematical Programming, 2021, 190 : 285 - 329