A Volumetric Study of Tetracaine Hydrochloride in Aqueous and in Aqueous Electrolyte Solutions at Different Temperatures

被引:0
|
作者
Vasim R. Shaikh
Aadil R. Pinjari
Vidya K. Patil
Kesharsingh J. Patil
机构
[1] KCES’s Moolji Jaitha College (Autonomous),School of Chemical Sciences
[2] Kavayitri Bahinabai Chaudhari North Maharashtra University,School of Chemical Sciences
来源
关键词
Local anesthetical drug; Tetracaine hydrochloride; Density; Apparent molar volume; Apparent molar expansivity; Transfer volume;
D O I
暂无
中图分类号
学科分类号
摘要
The experimental densities of a local anesthetical drug, tetracaine hydrochloride (TC·HCl) in aqueous binary (H2O + TC·HCl) solutions and aqueous ternary electrolytic solutions (H2O + NaCl/KCl + TC·HCl) are reported at 288.15, 293.15, 298.15, 303.15 and 308.15 K in the dilute concentration region. The densities, were used to calculate apparent molar volumes (Vϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{\phi }$$\end{document}) at the finite concentrations of TC·HCl at the studied temperatures. The coefficient of thermal expansion (α) of solutions and the apparent molar expansivity (Eϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\phi }$$\end{document}) of the solute, at 293.15, 298.15 and 303.15 K are also obtained. The limiting apparent molar volume (Vϕ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{\phi }^{0}$$\end{document}) and limiting apparent molar expansivity (Eϕ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\phi }^{0}$$\end{document}) of TC·HCl were estimated using extrapolation methods. It is noted that the solute expansivity goes through a minimum in water as a function of temperature and at lower concentrations of electrolytes. By using the Vϕ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{\phi }^{0}$$\end{document} data of the studied binary and ternary systems, the values of transfer volumes, that is, volume changes due to transfer (ΔtrVϕ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta_{{{\text{tr}}}} V_{\phi }^{0}$$\end{document}) from aqueous to mixed electrolyte solutions, are estimated. The observed ΔtrVϕ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta_{{{\text{tr}}}} V_{\phi }^{0}$$\end{document} values are found to be both temperature and concentration dependent. The excess molar volume of mixing (ΔmVE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta_{\text{m}} V^{{\text{E}}}$$\end{document}) are also calculated at 298.15 K. The volume changes due to micellization are small and the sign and magnitude depend upon the structure making and breaking abilities of the salt. It is suggested that the micelles involved are of the stacking type and not in the form of linear aggregates. The hydration shell water structure around the cations seems to be controlled by temperature and the nature of the perturbing ions. The results are explained in terms of unique stacking type interaction, akin to micelles but differing in details on the mode of interactions.
引用
收藏
页码:1510 / 1535
页数:25
相关论文
共 50 条
  • [41] Effect of potassium phosphate buffer on volumetric behavior of glycine in aqueous solutions at different temperatures
    Patyar, Poonam
    Singh, Gagandeep
    Kaur, Kuldeep
    JOURNAL OF MOLECULAR LIQUIDS, 2016, 213 : 191 - 200
  • [42] Volumetric studies of some electrolytes in water and in aqueous sodium dodecylsulfate solutions at different temperatures
    Kabiraz, Dulal Chandra
    Biswas, Tapan Kumar
    Huque, M. Entazul
    MONATSHEFTE FUR CHEMIE, 2010, 141 (10): : 1063 - 1068
  • [43] Volumetric behaviour of amino acids and their group contributions in aqueous lactose solutions at different temperatures
    Pal, Amalendu
    Chauhan, Nalin
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2011, 43 (02): : 140 - 146
  • [44] THERMOCHEMISTRY OF ELECTROLYTE SOLUTIONS .6. AQUEOUS SOLUTIONS OF COCL2 AT DIFFERENT TEMPERATURES
    MISHCHENKO, K
    PODGORNAYA, EA
    ZHURNAL OBSHCHEI KHIMII, 1961, 31 (06): : 1743 - &
  • [45] Interactions of tripeptide with glucose in aqueous solutions at various temperatures: A volumetric and ultrasonic study
    Pal, Amalendu
    Chauhan, Nalin
    Kumar, Suresh
    THERMOCHIMICA ACTA, 2010, 509 (1-2) : 24 - 32
  • [46] SPECIFIC VOLUMES OF AQUEOUS ELECTROLYTE SOLUTIONS AT HIGH TEMPERATURES
    RODNYANSKII, IM
    KOROBKOV, VI
    GALINKER, IS
    ZHURNAL FIZICHESKOI KHIMII, 1962, 36 (10): : 2216 - 2219
  • [47] Calculation of densities of aqueous electrolyte solutions at subzero temperatures
    Mironenko, MV
    Grant, SA
    Marion, GM
    JOURNAL OF SOLUTION CHEMISTRY, 1997, 26 (05) : 433 - 460
  • [48] DEHYDRATION TEMPERATURES OF POLYETHYLENE OXIDES IN AQUEOUS ELECTROLYTE SOLUTIONS
    DASHEVSK.BI
    GLUZMAN, MK
    FRIDMAN, GM
    COLLOID JOURNAL-USSR, 1968, 30 (03): : 270 - &
  • [49] Calculation of densities of aqueous electrolyte solutions at subzero temperatures
    Mikhail V. Mironenko
    Steven A. Grant
    Giles M. Marion
    Journal of Solution Chemistry, 1997, 26 : 433 - 460
  • [50] VOLUMETRIC PROPERTIES OF SOME AQUEOUS NON-ELECTROLYTE SOLUTIONS
    TASKER, IR
    SPITZER, JJ
    SURI, SK
    WOOD, RH
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 1983, 28 (02): : 266 - 275