A Volumetric Study of Tetracaine Hydrochloride in Aqueous and in Aqueous Electrolyte Solutions at Different Temperatures

被引:0
|
作者
Vasim R. Shaikh
Aadil R. Pinjari
Vidya K. Patil
Kesharsingh J. Patil
机构
[1] KCES’s Moolji Jaitha College (Autonomous),School of Chemical Sciences
[2] Kavayitri Bahinabai Chaudhari North Maharashtra University,School of Chemical Sciences
来源
关键词
Local anesthetical drug; Tetracaine hydrochloride; Density; Apparent molar volume; Apparent molar expansivity; Transfer volume;
D O I
暂无
中图分类号
学科分类号
摘要
The experimental densities of a local anesthetical drug, tetracaine hydrochloride (TC·HCl) in aqueous binary (H2O + TC·HCl) solutions and aqueous ternary electrolytic solutions (H2O + NaCl/KCl + TC·HCl) are reported at 288.15, 293.15, 298.15, 303.15 and 308.15 K in the dilute concentration region. The densities, were used to calculate apparent molar volumes (Vϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{\phi }$$\end{document}) at the finite concentrations of TC·HCl at the studied temperatures. The coefficient of thermal expansion (α) of solutions and the apparent molar expansivity (Eϕ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\phi }$$\end{document}) of the solute, at 293.15, 298.15 and 303.15 K are also obtained. The limiting apparent molar volume (Vϕ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{\phi }^{0}$$\end{document}) and limiting apparent molar expansivity (Eϕ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_{\phi }^{0}$$\end{document}) of TC·HCl were estimated using extrapolation methods. It is noted that the solute expansivity goes through a minimum in water as a function of temperature and at lower concentrations of electrolytes. By using the Vϕ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{\phi }^{0}$$\end{document} data of the studied binary and ternary systems, the values of transfer volumes, that is, volume changes due to transfer (ΔtrVϕ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta_{{{\text{tr}}}} V_{\phi }^{0}$$\end{document}) from aqueous to mixed electrolyte solutions, are estimated. The observed ΔtrVϕ0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta_{{{\text{tr}}}} V_{\phi }^{0}$$\end{document} values are found to be both temperature and concentration dependent. The excess molar volume of mixing (ΔmVE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Delta_{\text{m}} V^{{\text{E}}}$$\end{document}) are also calculated at 298.15 K. The volume changes due to micellization are small and the sign and magnitude depend upon the structure making and breaking abilities of the salt. It is suggested that the micelles involved are of the stacking type and not in the form of linear aggregates. The hydration shell water structure around the cations seems to be controlled by temperature and the nature of the perturbing ions. The results are explained in terms of unique stacking type interaction, akin to micelles but differing in details on the mode of interactions.
引用
收藏
页码:1510 / 1535
页数:25
相关论文
共 50 条
  • [1] A Volumetric Study of Tetracaine Hydrochloride in Aqueous and in Aqueous Electrolyte Solutions at Different Temperatures
    Shaikh, Vasim R.
    Pinjari, Aadil R.
    Patil, Vidya K.
    Patil, Kesharsingh J.
    JOURNAL OF SOLUTION CHEMISTRY, 2020, 49 (12) : 1510 - 1535
  • [2] Volumetric Properties of Local Anesthetical Drug Lidocaine Hydrochloride in Aqueous and in Aqueous NaCl Solutions at Different Temperatures
    Shaikh, Vasim R.
    Salunke, Vidya R.
    Behare, Karishma P.
    Patil, Sayali E.
    Borse, Amulrao U.
    Patil, Kesharsingh J.
    JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2018, 63 (05): : 1498 - 1506
  • [3] Volumetric properties of betaine hydrochloride drug in aqueous NaCl and KCl solutions at different temperatures
    Ryshetti, Suresh
    Chennuri, Bharath Kumar
    Noothi, Raghuram
    Tangeda, Savitha Jyostna
    Gardas, Ramesh L.
    THERMOCHIMICA ACTA, 2014, 597 : 71 - 77
  • [4] Volumetric and viscometric behaviour of pyridoxine hydrochloride in aqueous tetrabutylammonium hydrogen sulphate solutions at different temperatures
    Sarkar, Abhijit
    Pandit, Bijan Kumar
    Sinha, Biswajit
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2016, 103 : 36 - 43
  • [5] Effect of Sodium Dodecylbenzenesulfonate on the Association Behavior of Promethazine Hydrochloride in Aqueous/Electrolyte Solutions at Different Temperatures
    Malik Abdul Rub
    Naved Azum
    Abdullah M. Asiri
    Heba A. Kashmery
    Sulaiman Y. M. Alfaifi
    Salman S. Alharthi
    Journal of Solution Chemistry, 2017, 46 : 862 - 885
  • [6] Effect of Sodium Dodecylbenzenesulfonate on the Association Behavior of Promethazine Hydrochloride in Aqueous/Electrolyte Solutions at Different Temperatures
    Rub, Malik Abdul
    Azum, Naved
    Asiri, Abdullah M.
    Kashmery, Heba A.
    Alfaifi, Sulaiman Y. M.
    Alharthi, Salman S.
    JOURNAL OF SOLUTION CHEMISTRY, 2017, 46 (04) : 862 - 885
  • [7] Volumetric and ultrasonic study of polyethylene glycols in aqueous solutions of niacin at different temperatures
    Chakraborty, Nabaparna
    Juglan, K. C.
    Kumar, Harsh
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2021, 154
  • [8] Conductometric and volumetric study of copper sulphate in aqueous ethanol solutions at different temperatures
    Gomaa, Esam A.
    Negm, Amr
    Tahoon, Mohamed A.
    JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE, 2017, 11 (05): : 741 - 748
  • [9] The aggregation behavior of trimetazidine hydrochloride in aqueous solutions at different temperatures
    Genc, Lutfi
    JOURNAL OF MOLECULAR LIQUIDS, 2015, 208 : 165 - 169
  • [10] Volumetric properties of sodium perfluoroalkylcarboxylates in aqueous solutions at different temperatures
    Gonzalez-Perez, Alfredo
    Ruso, Juan M.
    Blanco, Elena
    Romero, Maria J.
    Prieto, Gerardo
    Sarmiento, Felix
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2006, 290 (1-3) : 50 - 55