New symmetries for the gravitational S-matrix

被引:0
|
作者
Miguel Campiglia
Alok Laddha
机构
[1] Instituto de Física,
[2] Facultad de Ciencias,undefined
[3] Chennai Mathematical Institute,undefined
关键词
Classical Theories of Gravity; Space-Time Symmetries; Gauge Symmetry;
D O I
暂无
中图分类号
学科分类号
摘要
In [15] we proposed a generalization of the BMS group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{G} $$\end{document} which is a semi-direct product of supertranslations and smooth diffeomorphisms of the conformal sphere. Although an extension of BMS, G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{G} $$\end{document} is a symmetry group of asymptotically flat space times. By taking G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{G} $$\end{document} as a candidate symmetry group of the quantum gravity S-matrix, we argued that the Ward identities associated to the generators of Diff(S2) were equivalent to the Cachazo-Strominger subleading soft graviton theorem. Our argument however was based on a proposed definition of the Diff(S2) charges which we could not derive from first principles as G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{G} $$\end{document} does not have a well defined action on the radiative phase space of gravity. Here we fill this gap and provide a first principles derivation of the Diff(S2) charges. The result of this paper, in conjunction with the results of [4, 15] prove that the leading and subleading soft theorems are equivalent to the Ward identities associated to G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{G} $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [41] THE SYMMETRY OF THE S-MATRIX
    COESTER, F
    PHYSICAL REVIEW, 1953, 89 (03): : 619 - 620
  • [42] S-MATRIX CHARACTERIZATION
    徐邦清
    邵常贵
    王永久
    Science China Mathematics, 1987, (08) : 819 - 825
  • [43] SUPERGRAVITY AND S-MATRIX
    GRISARU, MT
    PENDLETON, HN
    NIEUWENHUIZEN, PV
    PHYSICAL REVIEW D, 1977, 15 (04): : 996 - 1006
  • [44] CONTINUITY OF S-MATRIX
    NARNHOFER, H
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1975, 30 (02): : 254 - 266
  • [45] ON THE EVALUATION OF THE S-MATRIX
    COESTER, F
    PHYSICAL REVIEW, 1951, 81 (03): : 455 - 456
  • [46] THE OCTONIONIC S-MATRIX
    DEVEGA, HJ
    NICOLAI, H
    PHYSICS LETTERS B, 1990, 244 (02) : 295 - 298
  • [47] LAGRANGIAN S-MATRIX
    BURTON, WK
    PHYSICAL REVIEW, 1951, 84 (01): : 158 - 158
  • [48] EIGENVALUES OF THE S-MATRIX
    NEWTON, RG
    PHYSICAL REVIEW LETTERS, 1989, 62 (16) : 1811 - 1812
  • [49] The noncommutative S-Matrix
    Raju, Suvrat
    JOURNAL OF HIGH ENERGY PHYSICS, 2009, (06):
  • [50] S-MATRIX IN HYPERQUANTIZATION
    TAKAHASHI, Y
    GOURISHANKAR, R
    NUCLEAR PHYSICS B, 1969, B 12 (02) : 301 - +