New symmetries for the gravitational S-matrix

被引:0
|
作者
Miguel Campiglia
Alok Laddha
机构
[1] Instituto de Física,
[2] Facultad de Ciencias,undefined
[3] Chennai Mathematical Institute,undefined
关键词
Classical Theories of Gravity; Space-Time Symmetries; Gauge Symmetry;
D O I
暂无
中图分类号
学科分类号
摘要
In [15] we proposed a generalization of the BMS group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{G} $$\end{document} which is a semi-direct product of supertranslations and smooth diffeomorphisms of the conformal sphere. Although an extension of BMS, G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{G} $$\end{document} is a symmetry group of asymptotically flat space times. By taking G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{G} $$\end{document} as a candidate symmetry group of the quantum gravity S-matrix, we argued that the Ward identities associated to the generators of Diff(S2) were equivalent to the Cachazo-Strominger subleading soft graviton theorem. Our argument however was based on a proposed definition of the Diff(S2) charges which we could not derive from first principles as G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{G} $$\end{document} does not have a well defined action on the radiative phase space of gravity. Here we fill this gap and provide a first principles derivation of the Diff(S2) charges. The result of this paper, in conjunction with the results of [4, 15] prove that the leading and subleading soft theorems are equivalent to the Ward identities associated to G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{G} $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [31] Symmetries of the Nucleon–Nucleon S-Matrix and Effective Field Theory Expansions
    Silas R. Beane
    Roland C. Farrell
    Few-Body Systems, 2022, 63
  • [32] S-matrix pole symmetries for non-Hermitian scattering Hamiltonians
    Simon, M. A.
    Buendia, A.
    Kiely, A.
    Mostafazadeh, Ali
    Muga, J. G.
    PHYSICAL REVIEW A, 2019, 99 (05)
  • [33] Exploring an S-matrix for gravitational collapse II: a momentum space analysis
    Veneziano, G.
    Wosiek, J.
    JOURNAL OF HIGH ENERGY PHYSICS, 2008, (09):
  • [34] Symmetries of the Nucleon-Nucleon S-Matrix and Effective Field Theory Expansions
    Beane, Silas R.
    Farrell, Roland C.
    FEW-BODY SYSTEMS, 2022, 63 (02)
  • [35] Correlation functions at the bulk point singularity from the gravitational eikonal S-matrix
    Cardona, Carlos
    JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (11)
  • [36] Correlation functions at the bulk point singularity from the gravitational eikonal S-matrix
    Carlos Cardona
    Journal of High Energy Physics, 2019
  • [37] On the S-matrix conjecture
    Drnovsek, Roman
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 439 (11) : 3555 - 3560
  • [38] THE SYMMETRY OF THE S-MATRIX
    COESTER, F
    PHYSICAL REVIEW, 1953, 89 (04): : 913 - 913
  • [39] CONVERGENCE OF THE S-MATRIX
    YENNIE, DR
    GARTENHAUS, S
    NUOVO CIMENTO, 1958, 9 (01): : 59 - 76
  • [40] INVARIANCE AND THE S-MATRIX
    KAMEFUCHI, S
    TAKAHASHI, Y
    NUCLEAR PHYSICS, 1960, 17 (04): : 686 - 694