New symmetries for the gravitational S-matrix

被引:0
|
作者
Miguel Campiglia
Alok Laddha
机构
[1] Instituto de Física,
[2] Facultad de Ciencias,undefined
[3] Chennai Mathematical Institute,undefined
关键词
Classical Theories of Gravity; Space-Time Symmetries; Gauge Symmetry;
D O I
暂无
中图分类号
学科分类号
摘要
In [15] we proposed a generalization of the BMS group G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{G} $$\end{document} which is a semi-direct product of supertranslations and smooth diffeomorphisms of the conformal sphere. Although an extension of BMS, G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{G} $$\end{document} is a symmetry group of asymptotically flat space times. By taking G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{G} $$\end{document} as a candidate symmetry group of the quantum gravity S-matrix, we argued that the Ward identities associated to the generators of Diff(S2) were equivalent to the Cachazo-Strominger subleading soft graviton theorem. Our argument however was based on a proposed definition of the Diff(S2) charges which we could not derive from first principles as G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{G} $$\end{document} does not have a well defined action on the radiative phase space of gravity. Here we fill this gap and provide a first principles derivation of the Diff(S2) charges. The result of this paper, in conjunction with the results of [4, 15] prove that the leading and subleading soft theorems are equivalent to the Ward identities associated to G\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{G} $$\end{document}.
引用
收藏
相关论文
共 50 条
  • [1] New symmetries for the gravitational S-matrix
    Campiglia, Miguel
    Laddha, Alok
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (04):
  • [2] SYMMETRIES OF THE S-MATRIX FOR MASSLESS PARTICLES
    STRUBE, D
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (13): : 2603 - 2610
  • [3] S-MATRIX APPROACH TO INTERNAL SYMMETRIES
    BLANKENBECLER, R
    COON, DD
    ROY, SM
    PHYSICAL REVIEW, 1967, 156 (05): : 1624 - +
  • [4] FINITELY MANY SYMMETRIES OF THE S-MATRIX
    GARBER, WD
    JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (05) : 1264 - 1266
  • [5] SYMMETRIES OF THE AdS/CFT S-MATRIX
    Spill, Fabian
    ACTA PHYSICA POLONICA B, 2008, 39 (12): : 3135 - 3142
  • [6] On an exponential representation of the gravitational S-matrix
    Damgaard, Poul H.
    Plante, Ludovic
    Vanhove, Pierre
    JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (11)
  • [7] On an exponential representation of the gravitational S-matrix
    Poul H. Damgaard
    Ludovic Planté
    Pierre Vanhove
    Journal of High Energy Physics, 2021
  • [8] NONTRANSLATIONALLY COVARIANT CURRENTS AND SYMMETRIES OF S-MATRIX
    GARBER, WD
    REEH, H
    JOURNAL OF MATHEMATICAL PHYSICS, 1978, 19 (05) : 985 - 986
  • [9] Discrete symmetries and S-matrix of the XXZ chain
    Doikou, A
    Nepomechie, RI
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (37): : L621 - L627
  • [10] S-MATRIX FOR GRAVITATIONAL FIELD IN A NONLINEAR GAUGE
    MAHESHWARI, A
    LETTERE AL NUOVO CIMENTO, 1970, 4 (07): : 298 - +