Homogeneous distributed natural pyrite-derived composite induced by modified graphite as high-performance lithium-ion batteries anode

被引:0
|
作者
Juan Yu
Yinbo Wei
Bicheng Meng
Jiaxin Peng
Kai Yang
Tianxing Chen
Naixing Yang
Xiuyun Chuan
机构
[1] Xi’an University of Architecture and Technology,School of Metallurgical Engineering
[2] Peking University,School of Earth and Space Sciences
[3] Xi’an University of Architecture and Technology,Shaanxi Key Laboratory of Nano
[4] Xi’an University of Architecture Technology,Materials and Technology, School of Mechanical and Electrical Engineering
来源
International Journal of Minerals, Metallurgy and Materials | 2023年 / 30卷
关键词
natural pyrite; modified graphite; anode; lithium-ion batteries; homogeneous grain distributions;
D O I
暂无
中图分类号
学科分类号
摘要
Natural minerals-based energy materials have attracted enormous attention because of the advantages of good materials consistency, high production, environmental friendliness, and low cost. The uniform distribution of grains can effectively inhibit the aggregation of active materials, improving lithium storage performance. In this work, natural graphite is modified by polyvinylpyrrolidone to obtain modified graphite with reduced size and better dispersion. Natural pyrite composite polyvinylpyrrolidone-modified graphite (pyrite/PG) material with uniform particle distribution is obtained by the ball milling process. The subsequent calcination process converts pyrite/PG into Fe1−xS compounded with polyvinylpyrrolidone-modified graphite (Fe1−xS/PG). The homogeneous grain distributions of active material can facilitate the faster transfer of electrons and promote the efficient utilization of active materials. The as-prepared Fe1−xS/PG electrode exhibits a remarkably reversible specific capacity of 613.0 mAh·g−1 at 0.2 A·g−1 after 80 cycles and an excellent rate capability of 523.0 mAh·g−1 at 5 A·g−1. Even at a higher current density of 10 A·g−1, it can deliver a specific capacity of 348.0 mAh·g−1. Moreover, the dominant pseudocapacitance in redox reactions accounts for the impressive rate and cycling stability. This work provides a low-cost and facile method to fabricate natural mineral-based anode materials and apprise readers about the impact of uniform particle distribution on lithium storage performance.
引用
收藏
页码:1353 / 1362
页数:9
相关论文
共 50 条
  • [21] Embedding silicon in biomass-derived porous carbon framework as high-performance anode of lithium-ion batteries
    He W.
    Luo H.
    Jing P.
    Wang H.
    Xu C.
    Wu H.
    Wang Q.
    Zhang Y.
    Journal of Alloys and Compounds, 2022, 918
  • [22] An interconnected and scalable hollow Si-C nanospheres/graphite composite for high-performance lithium-ion batteries
    Gao, Jiafeng
    Zuo, Songlin
    Liu, He
    Jiang, Qiwen
    Wang, Chenhao
    Yin, Huanhuan
    Wang, Ziqi
    Wang, Jie
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 624 : 555 - 563
  • [23] Cerium vanadate/carbon nanotube hybrid composite nanostructures as a high-performance anode material for lithium-ion batteries
    Narsimulu, D.
    Kakarla, Ashok Kumar
    Yu, Jae Su
    JOURNAL OF ENERGY CHEMISTRY, 2021, 58 : 25 - 32
  • [24] A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
    Jin Li
    Juan-Yu Yang
    Jian-Tao Wang
    Shi-Gang Lu
    Rare Metals, 2019, 38 : 199 - 205
  • [25] CNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries
    Zhenhai Wen
    Suqin Ci
    Shun Mao
    Shumao Cui
    Zhen He
    Junhong Chen
    Nanoscale Research Letters, 8
  • [26] CuSn(OH)6 Nanocubes as High-Performance Anode Materials for Lithium-Ion Batteries
    Zhou, Zhaofu
    Chen, Tian
    Deng, Jianqiu
    Yao, Qingrong
    Wang, Zhongmin
    Zhou, Huaiying
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2018, 13 (02): : 2001 - 2009
  • [27] A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
    Li, Jin
    Yang, Juan-Yu
    Wang, Jian-Tao
    Lu, Shi-Gang
    RARE METALS, 2019, 38 (03) : 199 - 205
  • [28] CNT@TiO2 nanohybrids for high-performance anode of lithium-ion batteries
    Wen, Zhenhai
    Ci, Suqin
    Mao, Shun
    Cui, Shumao
    He, Zhen
    Chen, Junhong
    NANOSCALE RESEARCH LETTERS, 2013, 8 : 1 - 6
  • [29] A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
    Jin Li
    Juan-Yu Yang
    Jian-Tao Wang
    Shi-Gang Lu
    Rare Metals, 2019, 38 (03) : 199 - 205
  • [30] Sb@C/expanded graphite as high-performance anode material for lithium ion batteries
    Wu, Yanan
    Pan, Qichang
    Zheng, Fenghua
    Ou, Xing
    Yang, Chenghao
    Xiong, Xunhui
    Liu, Meilin
    Hu, Dongli
    Huang, Chunlai
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 744 : 481 - 486