Scanning gate imaging of quantum point contacts and the origin of the 0.7 anomaly

被引:0
|
作者
Andrea Iagallo
Nicola Paradiso
Stefano Roddaro
Christian Reichl
Werner Wegscheider
Giorgio Biasiol
Lucia Sorba
Fabio Beltram
Stefan Heun
机构
[1] Istituto Nanoscienze-CNR and Scuola Normale Superiore,National Enterprise for Nanoscience and Nanotechnology (NEST)
[2] Laboratorio TASC,Istituto Offcina dei Materiali CNR
[3] ETH Zurich,Solid State Physics Laboratory
来源
Nano Research | 2015年 / 8卷
关键词
two-dimensional electron gas (2-DEG); scanning gate microscopy; 0.7 anomaly;
D O I
暂无
中图分类号
学科分类号
摘要
The origin of the anomalous transport feature appearing at a conductance G ≈ 0.7 × (2e2/h) in quasi-1D ballistic devices-the so-called 0.7 anomaly-represents a long standing puzzle. Several mechanisms have been proposed to explain it, but a general consensus has not been achieved. Proposed explanations have been based on quantum interference, the Kondo effect, Wigner crystallization, and other phenomena. A key open issue is whether the point defects that can occur in these low-dimensional devices are the physical cause behind this conductance anomaly. Here we adopt a scanning gate microscopy technique to map individual impurity positions in several quasi-1D constrictions and correlate these with conductance characteristics. Our data demonstrate that the 0.7 anomaly can be observed irrespective of the presence of localized defects, and we conclude that the 0.7 anomaly is a fundamental property of low-dimensional systems.
引用
收藏
页码:948 / 956
页数:8
相关论文
共 14 条
  • [1] Scanning gate imaging of quantum point contacts and the origin of the 0.7 anomaly
    Iagallo, Andrea
    Paradiso, Nicola
    Roddaro, Stefano
    Reichl, Christian
    Wegscheider, Werner
    Biasiol, Giorgio
    Sorba, Lucia
    Beltram, Fabio
    Heun, Stefan
    NANO RESEARCH, 2015, 8 (03) : 948 - 956
  • [2] Conductance response of graphene nanoribbons and quantum point contacts in scanning gate measurements
    Mrenca, A.
    Kolasinski, K.
    Szafran, B.
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2015, 30 (08)
  • [3] Scanning gate measurements on a coupled quantum dot - Quantum point contact system
    Gildemeister, A. E.
    Ihn, T.
    Schleser, R.
    Ensslin, K.
    Driscoll, D. C.
    Gossard, A. C.
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 819 - +
  • [4] Scanning gate imaging of two coupled quantum dots in single-walled carbon nanotubes
    Zhou, Xin
    Hedberg, James
    Miyahara, Yoichi
    Grutter, Peter
    Ishibashi, Koji
    NANOTECHNOLOGY, 2014, 25 (49)
  • [5] Scanning gate imaging of transport within an InGaAs QPC
    Aoki, N.
    da Cunha, C. R.
    Morimoto, T.
    Akis, R.
    Ferry, D. K.
    Ochiai, Y.
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2007, 893 : 715 - +
  • [6] Scanning gate microscopy mapping of edge current and branched electron flow in a transition metal dichalcogenide nanoribbon and quantum point contact
    Prokop, M.
    Gut, D.
    Nowak, M. P.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2020, 32 (20)
  • [7] Scanning a metallic tip close to a quantum point contact
    Pioda, A.
    Brunner, D.
    Kicin, S.
    Ihn, T.
    Sigrist, M.
    Fuhrer, A.
    Ensslin, K.
    Reinwald, M.
    Wegscheider, W.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 32 (1-2) : 167 - 170
  • [8] Unraveling Quantum Hall Breakdown in Bilayer Graphene with Scanning Gate Microscopy
    Connolly, M. R.
    Puddy, R. K.
    Logoteta, D.
    Marconcini, P.
    Roy, M.
    Griffiths, J. P.
    Jones, G. A. C.
    Maksym, P. A.
    Macucci, M.
    Smith, C. G.
    NANO LETTERS, 2012, 12 (11) : 5448 - 5454
  • [9] Imaging of quantum interference patterns within a quantum point contact
    da Cunha, Carlo R.
    Aoki, Nobuyuki
    Akis, Richard
    Ferry, David K.
    Ochiai, Yuichi
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2006, 34 (1-2) : 682 - 685
  • [10] Scanning gate microscopy of magnetic focusing in graphene devices: quantum versus classical simulation
    Petrovic, M. D.
    Milovanovic, S. P.
    Peeters, F. M.
    NANOTECHNOLOGY, 2017, 28 (18)