Optimality conditions and duality for semi-infinite mathematical programming problems with equilibrium constraints, using convexificators

被引:0
作者
Yogendra Pandey
S. K. Mishra
机构
[1] Indian Institute of Technology,Department of HSS
[2] Banaras Hindu University,Department of Mathematics
来源
Annals of Operations Research | 2018年 / 269卷
关键词
Mathematical programming problems with equilibrium constraints; Optimality conditions; Semi-infinite programming; Wolfe type dual; Mond–Weir type dual; Convexificators;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider semi-infinite mathematical programming problems with equilibrium constraints (SIMPEC). We establish necessary and sufficient optimality conditions for the SIMPEC, using convexificators. We study the Wolfe type dual problem for the SIMPEC under the ∂∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial ^{*}$$\end{document}-convexity assumption. A Mond–Weir type dual problem is also formulated and studied for the SIMPEC under the ∂∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial ^{*}$$\end{document}-convexity, ∂∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial ^{*}$$\end{document}-pseudoconvexity and ∂∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial ^{*}$$\end{document}-quasiconvexity assumptions. Weak duality theorems are established to relate the SIMPEC and two dual programs in the framework of convexificators. Further, strong duality theorems are obtained under generalized standard Abadie constraint qualification.
引用
收藏
页码:549 / 564
页数:15
相关论文
共 68 条
[31]  
Kortanek KO(2014)Enhanced Karush–Kuhn–Tucker conditions for mathematical programs with equilibrium constraints Journal of Optimization Theory and Applications 163 777-794
[32]  
Jeyakumar V(undefined)undefined undefined undefined undefined-undefined
[33]  
Luc DT(undefined)undefined undefined undefined undefined-undefined
[34]  
Li XF(undefined)undefined undefined undefined undefined-undefined
[35]  
Zhang JZ(undefined)undefined undefined undefined undefined-undefined
[36]  
Lin GH(undefined)undefined undefined undefined undefined-undefined
[37]  
Fukushima M(undefined)undefined undefined undefined undefined-undefined
[38]  
López MA(undefined)undefined undefined undefined undefined-undefined
[39]  
Still G(undefined)undefined undefined undefined undefined-undefined
[40]  
Mishra SK(undefined)undefined undefined undefined undefined-undefined