Optimality conditions and duality for semi-infinite mathematical programming problems with equilibrium constraints, using convexificators

被引:0
作者
Yogendra Pandey
S. K. Mishra
机构
[1] Indian Institute of Technology,Department of HSS
[2] Banaras Hindu University,Department of Mathematics
来源
Annals of Operations Research | 2018年 / 269卷
关键词
Mathematical programming problems with equilibrium constraints; Optimality conditions; Semi-infinite programming; Wolfe type dual; Mond–Weir type dual; Convexificators;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we consider semi-infinite mathematical programming problems with equilibrium constraints (SIMPEC). We establish necessary and sufficient optimality conditions for the SIMPEC, using convexificators. We study the Wolfe type dual problem for the SIMPEC under the ∂∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial ^{*}$$\end{document}-convexity assumption. A Mond–Weir type dual problem is also formulated and studied for the SIMPEC under the ∂∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial ^{*}$$\end{document}-convexity, ∂∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial ^{*}$$\end{document}-pseudoconvexity and ∂∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\partial ^{*}$$\end{document}-quasiconvexity assumptions. Weak duality theorems are established to relate the SIMPEC and two dual programs in the framework of convexificators. Further, strong duality theorems are obtained under generalized standard Abadie constraint qualification.
引用
收藏
页码:549 / 564
页数:15
相关论文
共 68 条
  • [1] Ardali AA(2014)Optimality conditions for nonsmooth mathematical programs with equilibrium constraints, using convexificators Optimization 65 67-85
  • [2] Movahedian N(2013)Modeling water allocating institutions based on multiple optimization problems with equilibrium constraints Environmental Modelling and Software 46 196-207
  • [3] Nobakhtian S(2013)A relaxed constant positive linear dependence constraint qualification for mathematical programs with equilibrium constraints Journal of Optimization Theory and Applications 158 11-32
  • [4] Britz W(2014)Constraint qualifications for mathematical programs with equilibrium constraints and their local preservation property Journal of Optimization Theory and Applications 163 755-776
  • [5] Ferris M(2007)A overview of bilevel optimization Annals of Operations Research 153 235-256
  • [6] Kuhn A(2012)Bilevel road pricing: Theoretical analysis and optimality conditions Annals of Operations Research 196 223-240
  • [7] Chieu NH(1997)Hunting for a smaller convex subdifferential Journal of Global Optimization 10 305-326
  • [8] Lee GM(2004)Convexificators, generalized convexity and vector optimization Optimization 53 77-94
  • [9] Chieu NH(2012)Convexificators and strong Kuhn–Tucker conditions Computers and Mathematics with Applications 64 550-557
  • [10] Lee GM(2013)Notes on some constraint qualifications for mathematical programs with equilibrium constraints Journal of Optimization Theory and Applications 156 600-616