共 26 条
[1]
Hale J.K.(1966)Averaging methods for differential equations with retarded arguments and a small parameter J. Differ. Equ. 2 57-73
[2]
Kalmár-Nagy T.(2001)Subcritical Hopf bifurcation in the delay equation model for machine tool vibrations Nonlinear Dyn. 26 121-142
[3]
Stepán G.(2003)Effects of time delayed position feedback on a van der Pol–Duffing oscillator Phys. D 180 17-39
[4]
Moon F.C.(1996)Perturbation methods in nonlinear dynamics: applications to machining dynamics ASME J. Manuf. Sci. Technol. 119 485-493
[5]
Xu J.(2002)Multiple scales without center manifold reductions for delay differential equations near Hopf bifurcations Nonlinear Dyn. 30 323-335
[6]
Chung K.W.(2003)Remarks on the perturbation methods in solving the second-order delay differential equations Nonlinear Dyn. 33 379-398
[7]
Nayfeh A.H.(2002)Estimating critical Hopf bifurcation parameters for a second-order delay differential equation with application to machine tool chatter Nonlinear Dyn. 30 103-154
[8]
Chin C.-M.(1980)A Poincaré-Lindstedt approach to bifurcation problems for differential-delay equations IEEE Trans. Autom. Control 25 967-973
[9]
Pratt J.R.(2007)Hopf bifurcation formula for first order differential-delay equations Commun. Nonlinear Sci. Numer. Simul. 12 859-864
[10]
Das S.L.(1995)Harmonic balance in delay-differential equations J. Sound Vib. 186 649-656