MIMIC-IV, a freely accessible electronic health record dataset

被引:969
作者
Johnson, Alistair E. W. [1 ,2 ]
Bulgarelli, Lucas [1 ]
Shen, Lu [3 ]
Gayles, Alvin [3 ]
Shammout, Ayad [3 ]
Horng, Steven [3 ]
Pollard, Tom J. [1 ]
Moody, Benjamin [1 ]
Gow, Brian [1 ]
Lehman, Li-wei H. [1 ]
Celi, Leo A. [1 ,3 ]
Mark, Roger G. [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] Hosp Sick Children, Toronto, ON, Canada
[3] Beth Israel Deaconess Med Ctr, Boston, MA USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/s41597-022-01899-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Digital data collection during routine clinical practice is now ubiquitous within hospitals. The data contains valuable information on the care of patients and their response to treatments, offering exciting opportunities for research. Typically, data are stored within archival systems that are not intended to support research. These systems are often inaccessible to researchers and structured for optimal storage, rather than interpretability and analysis. Here we present MIMIC-IV, a publicly available database sourced from the electronic health record of the Beth Israel Deaconess Medical Center. Information available includes patient measurements, orders, diagnoses, procedures, treatments, and deidentified free-text clinical notes. MIMIC-IV is intended to support a wide array of research studies and educational material, helping to reduce barriers to conducting clinical research.
引用
收藏
页数:9
相关论文
共 28 条
[1]  
[Anonymous], Common Format and MIME Type for Comma-Separated Values (CSV) Files
[2]  
de Bruin Jonathan, 2022, Zenodo, DOI 10.5281/ZENODO.6470616
[3]  
Faltys M, 2021, PhysioNet
[4]  
Fontaine D, 2020, PGLOADER VER 3 6 2
[5]   PhysioBank, PhysioToolkit, and PhysioNet - Components of a new research resource for complex physiologic signals [J].
Goldberger, AL ;
Amaral, LAN ;
Glass, L ;
Hausdorff, JM ;
Ivanov, PC ;
Mark, RG ;
Mietus, JE ;
Moody, GB ;
Peng, CK ;
Stanley, HE .
CIRCULATION, 2000, 101 (23) :E215-E220
[6]   Early prediction of circulatory failure in the intensive care unit using machine learning [J].
Hyland, Stephanie L. ;
Faltys, Martin ;
Huser, Matthias ;
Lyu, Xinrui ;
Gumbsch, Thomas ;
Esteban, Cristobal ;
Bock, Christian ;
Horn, Max ;
Moor, Michael ;
Rieck, Bastian ;
Zimmermann, Marc ;
Bodenham, Dean ;
Borgwardt, Karsten ;
Ratsch, Gunnar ;
Merz, Tobias M. .
NATURE MEDICINE, 2020, 26 (03) :364-+
[7]  
Johnson A. E. W., 2019, ZENODO, DOI [10.5281/zenodo.3233003, DOI 10.5281/ZENODO.3233003]
[8]  
Johnson Alistair, 2022, PN, DOI 10.13026/8A4Q-W170
[9]  
Johnson Alistair, 2023, PN, DOI 10.13026/1CJN-2370
[10]  
Johnson Alistair, 2021, Zenodo, DOI 10.5281/ZENODO.5579577