A new construction of bent functions based on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}$$\end{document} -bent functions

被引:0
作者
Sugata Gangopadhyay
Anand Joshi
Gregor Leander
Rajendra Kumar Sharma
机构
[1] Indian Statistical Institute,Department of Mathematics
[2] Chennai Centre,Department of Mathematics
[3] Indian Institute of Technology,undefined
[4] Technical University of Denmark,undefined
关键词
Boolean functions; -bent functions; Fourier transform; 06E30; 94C10;
D O I
10.1007/s10623-012-9687-1
中图分类号
学科分类号
摘要
Dobbertin has embedded the problem of construction of bent functions in a recursive framework by using a generalization of bent functions called \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}$$\end{document} -bent functions. Following his ideas, we generalize the construction of partial spreads bent functions to partial spreads \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}$$\end{document} -bent functions of arbitrary level. Furthermore, we show how these partial spreads \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{Z}}$$\end{document} -bent functions give rise to a new construction of (classical) bent functions. Further, we construct a bent function on 8 variables which is inequivalent to all Maiorana–McFarland as well as PSap type bents. It is also shown that all bent functions on 6 variables, up to equivalence, can be obtained by our construction.
引用
收藏
页码:243 / 256
页数:13
相关论文
共 14 条
[1]  
Canteaut A.(2003)Decomposing bent functions IEEE Trans. Inf. Theory 49 2004-2019
[2]  
Charpin P.(1995)Generalized partial spreads IEEE Trans. Inf. Theory 41 1482-1487
[3]  
Carlet C.(1996)A characterization of binary bent functions J. Comb. Theory, Ser. A 76 328-335
[4]  
Carlet C.(2008)Bent functions embedded into the recursive framework of Des. Codes Cryptogr. 49 3-22
[5]  
Guillot P.(2009) -bent functions Computing 85 37-55
[6]  
Dobbertin H.(2011)On affine (non)equivalence of Boolean functions IEEE Trans. Inf. Theory 57 2263-2269
[7]  
Leander G.(1976)Counting Partial Spread Functions in Eight Variables J. Comb. Theory Ser. A 20 300-305
[8]  
Gangopadhyay S.(undefined)On bent functions undefined undefined undefined-undefined
[9]  
Sharma D.(undefined)undefined undefined undefined undefined-undefined
[10]  
Sarkar S.(undefined)undefined undefined undefined undefined-undefined