Synthesis and structural, optical and electrical properties of TiO2/SiO2 nanocomposites

被引:0
|
作者
D. Arun Kumar
J. Alex Xavier
J. Merline Shyla
Francis P. Xavier
机构
[1] Loyola Institute of Frontier Energy (LIFE),Department of Physics
[2] Loyola College,undefined
来源
关键词
TiO2; TiO2 Nanoparticles; SiO2 Nanoparticles; High Resolution Scanning Electron Microscope; Increase SiO2 Content;
D O I
暂无
中图分类号
学科分类号
摘要
Sole components of titania (TiO2), silica (SiO2) nanoparticles, and binary TiO2–SiO2 nanocomposites with various molar ratios of silica contents were prepared by modified sol–gel method. The samples were calcined at 500 °C for 5 h and characterized by X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), UV–Vis spectroscopy, Brunauett–Emmett–Teller (BET), and photoconductivity. The crystallite size for TiO2/SiO2 nanocomposites was calculated using Scherrer’s formula and found to be 5 nm for TiO2 nanoparticles. The binary oxide shows the anatase type of TiO2 at the mole ratio up to 80 mol% of TiO2 added. The band gap for as-synthesized nanocomposites was calculated and it was found that the band gap decreases with increase of SiO2 content and then decreases with excess SiO2 content. FTIR confirms that both TiO2 and SiO2 phases have been formed. The BET surface area for TiO2/SiO2 nanocomposite is found to be 303 m2/g, and pore size distribution has an average pore diameter about 10 nm for 40 mol% of TiO2 added. It also confirms the absence of macropores and the presence of micro and mesopores. The field-dependent dark and photoconductivity studies reveal that the dark and photocurrent increase linearly with applied field confirming the ohmic nature of the electric contacts. The dark and photocurrent increase slightly with increase of SiO2 content and decrease with excess amount of SiO2.
引用
收藏
页码:3700 / 3707
页数:7
相关论文
共 50 条
  • [31] Influence of Synthesis Conditions on the Structural, Optical, and Electrophysical Properties of TiO2/CuxO Nanocomposites
    Martyshov, M. N.
    Pavlikov, A. V.
    Kytina, E. V.
    Pinchuk, O. V.
    Savchuk, T. P.
    Konstantinova, E. A.
    Zaitsev, V. B.
    Kashkarov, P. K.
    TECHNICAL PHYSICS, 2024, 69 (05) : 1271 - 1278
  • [32] Preparation and Optical Properties of TiO2/SiO2 bilayer antireflection film
    Zhao, Leran
    Zhao, Changjiang
    Wang, Luoshu
    Fan, Xiaowei
    Wang, Qingguo
    Liu, Juncheng
    OPTICAL MATERIALS, 2021, 121 (121)
  • [33] Effects of Different Substrates on the Optical Properties of TiO2 and SiO2 Films
    Yang Ning-Ning
    Ya Jing
    Hu Feng-Jiao
    Guo Xiao-Lin
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2015, 31 (07) : 1315 - 1320
  • [34] Synthesis and structural and photocatalytic properties of TiO2/montmorillonite nanocomposites
    Kun, R
    Mogyorósi, K
    Dékány, I
    APPLIED CLAY SCIENCE, 2006, 32 (1-2) : 99 - 110
  • [35] Synthesis and photocatalytic property of SiO2/TiO2
    Jiang Dong
    Xu Yao
    Hou Bo
    Wu Dong
    Sun Yu-Han
    JOURNAL OF INORGANIC MATERIALS, 2008, 23 (05) : 1080 - 1084
  • [36] Influence of TiO2 nanoparticles on structural, optical, dielectric and electrical properties of bio-compatible PEOX–PVP–TiO2 nanocomposites
    Aswathanarayana Shubha
    S. R. Manohara
    Basavaraj Angadi
    Polymer Bulletin, 2022, 79 : 7117 - 7135
  • [37] Fabrication and properties of SiO2/TiO2 composites
    A. N. Murashkevich
    A. S. Lavitskaya
    O. A. Alisienok
    I. M. Zharskii
    Inorganic Materials, 2009, 45 : 1146 - 1152
  • [38] Fabrication and Properties of SiO2/TiO2 Composites
    Murashkevich, A. N.
    Lavitskaya, A. S.
    Alisienok, O. A.
    Zharskii, I. M.
    INORGANIC MATERIALS, 2009, 45 (10) : 1146 - 1152
  • [39] Synthesis and Microwave Dielectric Properties of MgO–TiO2–SiO2 Ceramics
    O. V. Ovchar
    O. I. V'yunov
    D. A. Durilin
    Yu. D. Stupin
    A. G. Belous
    Inorganic Materials, 2004, 40 : 1116 - 1121
  • [40] Chemical precipitation synthesis and optical properties of ZnO/SiO2 nanocomposites
    Yang, Huaming
    Xiao, Yu
    Liu, Kun
    Feng, Qiming
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2008, 91 (05) : 1591 - 1596