Towards cost analysis and energy estimation of simple multiplexer and demultiplexer using quantum dot cellular automata

被引:0
作者
Angshuman Khan
Rajeev Arya
机构
[1] National Institute of Technology Patna,Department of Electronics and Communication Engineering
来源
International Nano Letters | 2022年 / 12卷
关键词
Demultiplexer; Multiplexer; QCA; Quantum dot cellular automata; Quantum computing;
D O I
暂无
中图分类号
学科分类号
摘要
Quantum-dot cellular automata (QCA) is a rapidly intensifying nanotechnology that promises ultra-low power consumption, high speed, and ultra-small area requirements. Multiplexer and demultiplexer are the two fundamental and unavoidable blocks in quantum computation or nano communication using QCA. Two significant factors in evaluating the performance of a QCA circuit are energy dissipation and cost function. The total energy dissipation of the QCA multiplexer is 13 meV, whereas, the total energy dissipation of the demultiplexer is 10.4 meV utilizing QDE. The total energy dissipation of the multiplexer employing QCAPro at a fixed temperature of 2 K and a tunneling level of γ = 0.5EK is 21.67 meV, while the same for demultiplexer is 32.86 meV. The Runge–Kutta approximation approach was used to estimate energy using the tool QDE in the Coherence vector energy mode. In addition, the costs of both experimental objects have been determined. Multiplexer and demultiplexer area-delay costs (m2-cc) are 0.002 and 0.005, respectively; multiplexer QCA-specific cost is 90 scp, and demultiplexer QCA-specific cost is 20 scp; multiplexer and demultiplexer energy-delay costs (seV–scc) are 0.000206 and 0.000429, respectively.
引用
收藏
页码:67 / 77
页数:10
相关论文
共 142 条
  • [1] Lent CS(1993)Quantum cellular automata Nanotechnology 4 49-57
  • [2] Tougaw PD(1997)A device architecture for computing with quantum dots Proc. IEEE 85 541-557
  • [3] Porod W(1997)Realization of a functional cell for quantum-dot cellular automata Science 277 928-930
  • [4] Bernstein GH(1994)Logical devices implemented using quantum cellular automata J. Appl. Phys. 75 1818-1825
  • [5] Lent CS(1993)Lines of interacting quantum-dot cells: a binary wire J. Appl. Phys. 74 6227-6233
  • [6] Tougaw PD(1999)Quasiadiabatic switching for metal-island quantum-dot cellular automata J. Appl. Phys. 85 2977-2984
  • [7] Orlov AO(2015)A novel robust QCA full-adder Proc. Mater. Sci. 11 376-380
  • [8] Amlani I(2016)An efficient design of full adder in quantum-dot cellular automata (QCA) technology Microelectron J 50 35-43
  • [9] Bernstein GH(2019)A novel efficient full adder–subtractor in QCA nanotechnology Int Nano Lett 9 51-54
  • [10] Lent CS(2020)Design and analysis of novel QCA full adder-subtractor Int. J. Electron. Lett. 43 929-940