Holomorphic Families of Strongly Pseudoconvex Domains in a Kähler Manifold

被引:0
作者
Young-Jun Choi
Sungmin Yoo
机构
[1] Pusan National University,Department of Mathematics
[2] Korea Institute for Advanced Study (KIAS),School of Mathematics
来源
The Journal of Geometric Analysis | 2021年 / 31卷
关键词
Variation of Kähler–Einstein metrics; Relative canonical bundle; Strongly pseudoconvex domains in a Kahler manifold; Extension theorems;
D O I
暂无
中图分类号
学科分类号
摘要
Let p:X→Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p:X\rightarrow Y$$\end{document} be a surjective holomorphic mapping between Kähler manifolds. Let D be a smoothly bounded domain in X such that every generic fiber Dy:=D∩p-1(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_y:=D\cap p^{-1}(y)$$\end{document} for y∈Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$y\in Y$$\end{document} is a strongly pseudoconvex domain in Xy:=p-1(y)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X_y:=p^{-1}(y)$$\end{document}, which admits the complete Kähler–Einstein metric. This family of Kähler–Einstein metrics induces a smooth (1, 1)-form ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} on D. In this paper, we prove that ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} is positive-definite on D if D is strongly pseudoconvex. We also discuss the extension of ρ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\rho $$\end{document} as a positive current across singular fibers.
引用
收藏
页码:2639 / 2655
页数:16
相关论文
共 14 条
[1]  
Berndtsson B(2012)Quantitative extensions of pluricanonical forms and closed positive currents Nagoya Math. J. 205 25-65
[2]  
Păun S-Y(1980)On the existence of a complete Kähler metric on noncompact complex manifolds and the regularity of Fefferman’s equation Commun. Pure Appl. Math. 33 507-544
[3]  
Cheng S-T(2015)Variations of Kähler-Einstein metrics on stronlgy pseudoconvex domains Math. Ann. 362 121-146
[4]  
Yau Y-J(2015)A study of variations of pseudoconvex domains via Kähler-Einstein metrics Math. Z. 281 299-314
[5]  
Choi Y-J(1981)Some regularity theorems in Riemannian geometry Ann. Sci. Ecole Norm. Sup. (4) 14 249-260
[6]  
Choi DM(2001)Uniform volume estimates for holomorphic families of analytic sets Tr. Mat. Inst. Steklova. 235 52-56
[7]  
De Turck JL(1982)Boundary behaviour of the complex Monge-Ampère equation Acta Math. 148 159-192
[8]  
Kazdan K(2012)Positivity of relative canonical bundles and applications Invent. Math. 190 1-56
[9]  
Diederich S(2012)Kähler-Einstein metrics on strictly pseudoconvex domains Ann. Glob. Anal. Geom. 42 287-315
[10]  
Pinchuk JM(undefined)undefined undefined undefined undefined-undefined