The molecular machinery of regulated cell death

被引:0
|
作者
Daolin Tang
Rui Kang
Tom Vanden Berghe
Peter Vandenabeele
Guido Kroemer
机构
[1] Guangzhou Medical University,The Third Affiliated Hospital, Protein Modification and Degradation Lab, School of Basic Medical Sciences
[2] UT Southwestern Medical Center,Department of Surgery
[3] Flanders Institute for Biotechnology,Molecular Signaling and Cell Death Unit, VIB
[4] Ghent University,UGent Center for Inflammation Research
[5] University of Antwerp,Department for Biomedical Molecular Biology
[6] Ghent University,Laboratory of Pathophysiology, Faculty of Biomedical Sciences
[7] Université Paris Descartes,Methusalem program
[8] Sorbonne Paris Cité,Department of Women’s and Children’s Health
[9] Equipe 11 labellisée Ligue Nationale contre le Cancer,undefined
[10] Centre de Recherche des Cordeliers,undefined
[11] Institut National de la Santé et de la Recherche Médicale,undefined
[12] Université Pierre et Marie Curie,undefined
[13] Metabolomics and Cell Biology Platforms,undefined
[14] Gustave Roussy Cancer Campus,undefined
[15] Pôle de Biologie,undefined
[16] Hôpital Européen Georges Pompidou,undefined
[17] AP-HP,undefined
[18] Karolinska University Hospital,undefined
来源
Cell Research | 2019年 / 29卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Cells may die from accidental cell death (ACD) or regulated cell death (RCD). ACD is a biologically uncontrolled process, whereas RCD involves tightly structured signaling cascades and molecularly defined effector mechanisms. A growing number of novel non-apoptotic forms of RCD have been identified and are increasingly being implicated in various human pathologies. Here, we critically review the current state of the art regarding non-apoptotic types of RCD, including necroptosis, pyroptosis, ferroptosis, entotic cell death, netotic cell death, parthanatos, lysosome-dependent cell death, autophagy-dependent cell death, alkaliptosis and oxeiptosis. The in-depth comprehension of each of these lethal subroutines and their intercellular consequences may uncover novel therapeutic targets for the avoidance of pathogenic cell loss.
引用
收藏
页码:347 / 364
页数:17
相关论文
共 50 条
  • [31] Regulated cell death pathways in cardiomyopathy
    Sheng, Shu-yuan
    Li, Jia-min
    Hu, Xin-yang
    Wang, Yibin
    ACTA PHARMACOLOGICA SINICA, 2023, 44 (08) : 1521 - 1535
  • [32] Ion channels in regulated cell death
    Karl Kunzelmann
    Cellular and Molecular Life Sciences, 2016, 73 : 2387 - 2403
  • [33] Regulated cell death pathways in cardiomyopathy
    Shu-yuan Sheng
    Jia-min Li
    Xin-yang Hu
    Yibin Wang
    Acta Pharmacologica Sinica, 2023, 44 : 1521 - 1535
  • [34] Regulated Forms of Cell Death in Fungi
    Goncalves, A. Pedro
    Heller, Jens
    Daskalov, Asen
    Videira, Arnaldo
    Glass, N. Louise
    FRONTIERS IN MICROBIOLOGY, 2017, 8
  • [35] Necrosis, a regulated mechanism of cell death
    Ramirez Agudelo, Maria Elena
    Rojas Lopez, Mauricio
    IATREIA, 2010, 23 (02) : 166 - 177
  • [36] The role of glycine in regulated cell death
    Weinberg, Joel M.
    Bienholz, Anja
    Venkatachalam, M. A.
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2016, 73 (11-12) : 2285 - 2308
  • [37] Regulated cell death in diagnostic histopathology
    Skenderi, Faruk
    Vranic, Semir
    Damjanov, Ivan
    INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY, 2015, 59 (1-3): : 149 - 158
  • [38] Regulated Cell Death of Retinal Ganglion Cells in Glaucoma: Molecular Insights and Therapeutic Potentials
    Zhao, Wen-juan
    Fan, Chun-ling
    Hu, Xi-min
    Ban, Xiao-xia
    Wan, Hao
    He, Ye
    Zhang, Qi
    Xiong, Kun
    CELLULAR AND MOLECULAR NEUROBIOLOGY, 2023, 43 (07) : 3161 - 3178
  • [39] Regulated cell death in thyroid follicular cells: Molecular insights into pyroptosis, apoptosis, and necrosis
    He, Honghao
    Zhao, Daiwei
    GENE REPORTS, 2025, 39
  • [40] Regulated Cell Death of Retinal Ganglion Cells in Glaucoma: Molecular Insights and Therapeutic Potentials
    Wen-juan Zhao
    Chun-ling Fan
    Xi-min Hu
    Xiao-xia Ban
    Hao Wan
    Ye He
    Qi Zhang
    Kun Xiong
    Cellular and Molecular Neurobiology, 2023, 43 : 3161 - 3178