Hilbert’s Tenth Problem for function fields of varieties over algebraically closed fields of positive characteristic

被引:0
作者
Kirsten Eisenträger
机构
[1] The Pennsylvania State University,Department of Mathematics
来源
Monatshefte für Mathematik | 2012年 / 168卷
关键词
Hilbert’s Tenth Problem; Undecidability; Elliptic curves; Function fields; 11U05; 03B25;
D O I
暂无
中图分类号
学科分类号
摘要
Let K be the function field of a variety of dimension ≥ 2 over an algebraically closed field of odd characteristic. Then Hilbert’s Tenth Problem for K is undecidable. This generalizes the result by Kim and Roush from 1992 that Hilbert’s Tenth Problem for the purely transcendental function field \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{{\overline{\mathbb{F}}_p}}(t_1,t_2)}$$\end{document} is undecidable when p > 2.
引用
收藏
页码:1 / 16
页数:15
相关论文
共 18 条
[1]  
Denef J.(1975)Hilbert’s tenth problem for quadratic rings Proc. Am. Math. Soc. 48 214-220
[2]  
Denef J.(1978)The Diophantine problem for polynomial rings and fields of rational functions Trans. Am. Math. Soc. 242 391-399
[3]  
Eisenträger K.(2003)Hilbert’s tenth problem for algebraic function fields of characteristic 2 Pac. J. Math. 210 261-281
[4]  
Eisenträger K.(2004)Hilbert’s tenth problem for function fields of varieties over Int. Math. Res. Not. 59 3191-3205
[5]  
Eisenträger K.(2007)Hilbert’s tenth problem for function fields of varieties over number fields and J. Algebra 310 775-792
[6]  
Kim K.H.(1992)-adic fields J. Algebra 150 35-44
[7]  
Roush F.W.(1992)Diophantine undecidability of J. Algebra 152 230-239
[8]  
Kim K.H.(1995)( J. Algebra 176 83-110
[9]  
Roush F.W.(1970), Dokl. Akad. Nauk SSSR 191 279-282
[10]  
Kim K.H.(2005)) J. Reine Angew. Math. 587 77-143