Finite Groups with a System of Generalized Subnormal Schmidt Subgroups

被引:0
作者
X. Yi
M. Li
S. F. Kamornikov
机构
[1] Zhejiang Sci-Tech University,
[2] F. Skorina Gomel State University,undefined
来源
Siberian Mathematical Journal | 2023年 / 64卷
关键词
finite group; -subnormal subgroup; Schmidt group; -nilpotent group; -hypercenter; 512.542;
D O I
暂无
中图分类号
学科分类号
摘要
Granted a partition \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \sigma $\end{document} of the set of all primes, we study the structure of a finite group with a given system of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \sigma $\end{document}-subnormal Schmidt subgroups.
引用
收藏
页码:76 / 82
页数:6
相关论文
共 50 条
[21]   On finite groups with K-Nσ-subnormal Schmidt subgroups [J].
Hussain, Muhammad Tanveer .
ALGEBRA AND DISCRETE MATHEMATICS, 2024, 37 (02) :236-243
[22]   Finite groups with K-F-subnormal Schmidt subgroups [J].
Hu, Bin ;
Huang, Jianhong ;
Song, Dou ;
Safonova, Ina N. .
COMMUNICATIONS IN ALGEBRA, 2021, 49 (10) :4513-4518
[23]   Finite groups with subnormal second or third maximal subgroups [J].
Lutsenko, Yu. V. ;
Skiba, A. N. .
MATHEMATICAL NOTES, 2012, 91 (5-6) :680-688
[24]   Finite groups factorizable by generalized subnormal subgroups of coprime indices [J].
V. N. Semenchuk ;
V. F. Velesnitskii .
Mathematical Notes, 2015, 98 :466-471
[25]   Finite groups with subnormal second or third maximal subgroups [J].
Yu. V. Lutsenko ;
A. N. Skiba .
Mathematical Notes, 2012, 91 :680-688
[26]   Classes of finite groups with generalized subnormal cyclic primary subgroups [J].
V. I. Murashka .
Siberian Mathematical Journal, 2014, 55 :1105-1115
[27]   Finite groups factorizable by generalized subnormal subgroups of coprime indices [J].
Semenchuk, V. N. ;
Velesnitskii, V. F. .
MATHEMATICAL NOTES, 2015, 98 (3-4) :466-471
[28]   Finite groups with generalized subnormal embedding of Sylow subgroups [J].
Vasil'ev, A. F. ;
Vasil'eva, T. I. ;
Vegera, A. S. .
SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (02) :200-212
[29]   Finite groups with abnormal and -subnormal subgroups [J].
Monakhov, V. S. .
SIBERIAN MATHEMATICAL JOURNAL, 2016, 57 (02) :352-363
[30]   On ?-subnormal subgroups and products of finite groups [J].
Heliel, A. A. ;
Ballester-Bolinches, A. ;
Al-Shomrani, M. M. ;
Al-Obidy, R. A. .
ELECTRONIC RESEARCH ARCHIVE, 2022, 31 (02) :770-775