Theta divisors and the geometry of tautological model

被引:0
作者
Sonia Brivio
机构
[1] Dipartimento di Matematica e Applicazioni Universitá di Milano- Bicocca,
来源
Collectanea Mathematica | 2018年 / 69卷
关键词
Vector bundles; Theta divisors; Moduli spaces; Tautological map;
D O I
暂无
中图分类号
学科分类号
摘要
Let E be a stable vector bundle of rank r and slope 2g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2g-1$$\end{document} on a smooth irreducible complex projective curve C of genus g≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g \ge 3$$\end{document}. In this paper we show a relation between theta divisor ΘE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta _E$$\end{document} and the geometry of the tautological model PE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_E$$\end{document} of E. In particular, we prove that for r>g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r > g-1$$\end{document}, if C is a Petri curve and E is general in its moduli space then ΘE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta _E$$\end{document} defines an irreducible component of the variety parametrizing (g-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g-2)$$\end{document}-linear spaces which are g-secant to the tautological model PE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_E$$\end{document}. Conversely, for a stable, (g-2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(g-2)$$\end{document}-very ample vector bundle E, the existence of an irreducible non special component of dimension g-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g-1$$\end{document} of the above variety implies that E admits theta divisor.
引用
收藏
页码:131 / 150
页数:19
相关论文
共 14 条
  • [1] Beauville A(2003)Some stable bundles with reducible theta divisors Manuscr. Math. 110 343-349
  • [2] Beauville A(2006)Vector bundles on curves and theta functions, moduli spaces and arithmetic geometry, (Kyoto 2004) Adv. Stud. Pure Math. 45 145-156
  • [3] Beauville A(1989)Spectral curves and the generalized theta divisor J. Reine Angew. Math. 398 169-179
  • [4] Narasimhan MS(2003)Coherent systems and Brill–Noether theory Int. J. Math. 14 683-733
  • [5] Ramanan S(2015)A note on theta divisors of stable bundles Rev. Mat. Iberoam. 31 601-608
  • [6] Bradlow SB(2012)Coherent systems and modular subvarieties of Int. J. Math. 23 1250037-94
  • [7] Garcia-Prada O(1989)Groupe de Picard des variétés de modules de fibrés semi-stables sur les courbes algébriques Invent. Math. 97 53-undefined
  • [8] Muñoz V(undefined)undefined undefined undefined undefined-undefined
  • [9] Newstead PE(undefined)undefined undefined undefined undefined-undefined
  • [10] Brivio S(undefined)undefined undefined undefined undefined-undefined