Moments of Discrete Distributions via a Differential Operator

被引:0
作者
Murat M. [1 ]
Szynal D. [2 ]
机构
[1] Department of Mathematics, Lublin University of Technology, 20-618 Lublin
[2] Institute of Mathematics, Maria Curie-Skłodowska University, PL-20-031 Lublin
关键词
Classical Distribution; Negative Binomial Distribution; Discrete Distribution; Geometric Distribution; Discrete Random Variable;
D O I
10.1007/s10958-013-1341-6
中图分类号
学科分类号
摘要
In this report we derive moments of several discrete distributions via a differential operator. The first part of the report is devoted to the moments of truncated classical distributions. In the second part we present the moments for inflated and deformed power series distributions. Finally we use a differential operator to derive moments of two modified negative binomial distributions. © 2013 Springer Science+Business Media New York.
引用
收藏
页码:568 / 581
页数:13
相关论文
共 8 条
[1]  
Boullion T.L., Seaman Jr. J.W., Young D.M., Moments of discrete distributions derived using a differential operator, Amer. Statist., 46, 1, pp. 22-24, (1992)
[2]  
Gupta R.C., Modified power series distribution and some of its applications, Sankhyā B, 36, pp. 288-298, (1974)
[3]  
Johnson N.L., Kotz S., Discrete Distributions, (1969)
[4]  
Link R.F., Moments of discrete probability distributions derived using finite difference operators, Amer. Statist., 35, 1, pp. 44-46, (1986)
[5]  
Morris K.W., Murat M., Szynal D., Estimators of parameters of two modified geometric distributions, Int. J. Math. Statist. Sci., 9, 2, pp. 159-177, (2000)
[6]  
Murat M., Szynal D., Moments of certain inflated probability distributions, Ann. Univ. M. Curie-Sk lodowska, L, 14, pp. 125-146, (1996)
[7]  
Murat M., Szynal D., Moments of certain deformed probability distributions, Commun. Statist.-Theory Meth., 32, 2, pp. 291-314, (2003)
[8]  
Noak A., A class of random variables with discrete distributions, Ann. Math. Statist., 21, pp. 127-132, (1950)