Dynamical symmetry enhancement near N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2, D = 4 gauged supergravity horizons

被引:0
|
作者
J. Gutowski
T. Mohaupt
G. Papadopoulos
机构
[1] University of Surrey,Department of Mathematics
[2] University of Liverpool,Department of Mathematical Sciences
[3] King’s College London,Department of Mathematics
关键词
Black Holes; Black Holes in String Theory; Supergravity Models;
D O I
10.1007/JHEP03(2017)150
中图分类号
学科分类号
摘要
We show that all smooth Killing horizons with compact horizon sections of 4-dimensional gauged N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 2 supergravity coupled to any number of vector multiplets preserve 2c1K+4ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ 2{c}_1\left(\mathcal{K}\right)+4\ell $$\end{document} supersymmetries, where K\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{K} $$\end{document} is a pull-back of the Hodge bundle of the special Kähler manifold on the horizon spatial section. We also demonstrate that all such horizons with c1K=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {c}_1\left(\mathcal{K}\right)=0 $$\end{document} exhibit an sl2ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{s}\mathfrak{l}\left(2,\mathbb{R}\right) $$\end{document} symmetry and preserve either 4 or 8 supersymmetries. If the orbits of the sl2ℝ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathfrak{s}\mathfrak{l}\left(2,\mathbb{R}\right) $$\end{document} symmetry are 2-dimensional, the horizons are warped products of AdS2 with the horizon spatial section. Otherwise, the horizon section admits an isometry which preserves all the fields. The proof of these results is centered on the use of index theorem in conjunction with an appropriate generalization of the Lichnerowicz theorem for horizons that preserve at least one supersymmetry. In all c1K=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {c}_1\left(\mathcal{K}\right)=0 $$\end{document} cases, we specify the local geometry of spatial horizon sections and demonstrate that the solutions are determined by first order non-linear ordinary differential equations on some of the fields.
引用
收藏
相关论文
共 50 条