On the exponential Diophantine equation (3pm2-1)x+(p(p-3)m2+1)y=(pm)z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3pm^2-1)^x+(p(p-3)m^2+1)^y=(pm)^z$$\end{document}

被引:0
作者
Nobuhiro Terai
Takeshi Hibino
机构
[1] Oita University,Department of Computer Science and Intelligent Systems, Faculty of Engineering
[2] University of East Asia,Department of Psychology and Child Studies, Faculty of Human Sciences
关键词
Exponential Diophantine equation; Integer solution; Lower bound for linear forms in two logarithms; 11D61;
D O I
10.1007/s10998-016-0162-z
中图分类号
学科分类号
摘要
Let m be a positive integer, and let p be a prime with p≡1(mod4).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$p \equiv 1~(\mathrm{mod}~4).$$\end{document} Then we show that the exponential Diophantine equation (3pm2-1)x+(p(p-3)m2+1)y=(pm)z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(3pm^2-1)^x+(p(p-3)m^2+1)^y=(pm)^z$$\end{document} has only the positive integer solution (x,y,z)=(1,1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x, y, z)=(1, 1, 2)$$\end{document} under some conditions. As a corollary, we derive that the exponential Diophantine equation (15m2-1)x+(10m2+1)y=(5m)z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(15m^2-1)^x+(10m^2+1)^y=(5m)^z$$\end{document} has only the positive integer solution (x,y,z)=(1,1,2).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(x, y, z)=(1, 1, 2).$$\end{document} The proof is based on elementary methods and Baker’s method.
引用
收藏
页码:227 / 234
页数:7
相关论文
共 27 条
  • [1] Bertók C(2016)A Hasse-type principle for exponential Diophantine equations and its applications Math. Comput. 85 849-860
  • [2] Hajdu L(2001)Existence of primitive divisors of Lucas and Lehmer numbers Journal für die Reine und Angewandte Mathematik 539 75-122
  • [3] Bilu Y(1999)Linear forms in Math. Proc. Camb. Philos. Soc. 127 373-381
  • [4] Hanrot G(1999)-adic logarithms and the Diophantine equation Acta Arith. 91 85-93
  • [5] Voutier PM(1976)A note on the Diophantine equation Math. J. Okayama Univ. 19 1-5
  • [6] Bugeaud Y(2008)On the Diophantine equation Acta Arith. 133 325-348
  • [7] Cao Z(2011)Linear forms in two logarithms and interpolation determinants II Int. J. Number Theory 7 981-999
  • [8] Hadano T(2013)Terai’s conjecture on exponential Diophantine equations J. Number Theory 133 583-595
  • [9] Laurent M(2014)Generalizations of classical results on Jeśmanowicz’ conjecture concerning primitive Pythagorean triples Bull. Aust. Math. Soc. 90 9-19
  • [10] Miyazaki T(2015)On the exponential Diophantine equation Acta Math. Hungarica 147 286-293