Optimization in temporal qualitative constraint networks

被引:0
作者
Jean-François Condotta
Souhila Kaci
Yakoub Salhi
机构
[1] Université Lille-Nord de France,CRIL CNRS, UMR 8188
[2] Université Montpellier,LIRMM CNRS, UMR 5506
来源
Acta Informatica | 2016年 / 53卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Various formalisms for representing and reasoning about temporal information with qualitative constraints have been studied in the past three decades. The most known are definitely the Point Algebra (PA)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathsf {PA})$$\end{document} and the Interval Algebra (IA)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\mathsf {IA}})$$\end{document} proposed by Allen. In this paper, for both calculi, we study a problem that we call the minimal consistency problem (MinCons)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathsf {MinCons})$$\end{document}. Given a temporal qualitative constraint network (TQCN)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\mathsf {TQCN})$$\end{document} and a positive integer k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document}, this problem consists in deciding whether or not this TQCN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {TQCN}$$\end{document} admits a solution using at most k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k$$\end{document} distinct points on the line.We show that MinCons\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {MinCons}$$\end{document} for PA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {PA}$$\end{document} can be encoded into the finitary versions of Gödel logic. Furthermore, we prove that the MinCons\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {MinCons}$$\end{document} problem is NP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {NP}$$\end{document}-complete for both PA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {PA}$$\end{document} and IA\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathsf {IA}}$$\end{document}, in the general case. However, we show that for TQCN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {TQCN}$$\end{document}s defined on the convex relations, MinCons\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {MinCons}$$\end{document} is polynomial. For such TQCN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {TQCN}$$\end{document}s, we give a polynomial method that allows one to obtain compact scenarios.
引用
收藏
页码:149 / 170
页数:21
相关论文
共 17 条
[1]  
Allen JF(1983)Maintaining knowledge about temporal intervals Commun. ACM 26 832-843
[2]  
Drakengren T(1998)A complete classification of tractability in Allen’s algebra relative to subsets of basic relations Artif. Intell. 106 205-219
[3]  
Jonsson P(1959)A propositional calculus with denumerable matrix J. Symb. Log. 24 97-106
[4]  
Dummett M(2013)Decomposition and tractability in qualitative spatial and temporal reasoning Artif. Intell. 195 140-164
[5]  
Huang J(2008)Reasoning with various kinds of preferences: logic, non-monotonicity and algorithms Ann. Oper. Res. 163 89-114
[6]  
Li JJ(1977)Consistency in networks of relations Artif. Intell. 8 99-118
[7]  
Renz J(1995)Reasoning about temporal relations: a maximal tractable subclass of Allen’s interval algebra JACM 42 43-66
[8]  
Kaci S(1991)Temporally distributed symptoms in technical diagnosis LNCS 517 1-184
[9]  
van der Torre L(2005)Numerical representation of PQI interval orders Discrete Appl. Math. 147 125-146
[10]  
Mackworth AK(1990)Exact and approximate reasoning about temporal relations Comput. Intell. 6 133-144