Lagrangian self-similar solutions in gradient shrinking Kähler–Ricci solitons

被引:1
作者
Yamamoto H. [1 ]
机构
[1] Department of Mathematics, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo
基金
日本学术振兴会;
关键词
gradient soliton; Mean curvature flow; Ricci flow; self-similar solution;
D O I
10.1007/s00022-016-0336-0
中图分类号
学科分类号
摘要
In this paper, we give a lower bound estimate for the diameter of a Lagrangian self-shrinker in a gradient shrinking Kähler–Ricci soliton as an analog of a result of Futaki et al. (Ann Global Anal Geom 44(2):105–114, 2013) for a self-shrinker in a Euclidean space. We also prove an analog of a result of Cao and Li (Calc Var Partial Differ Equ 46(3–4):879–889, 2013) about the non-existence of compact self-expanders in a Euclidean space. © 2016, Springer International Publishing.
引用
收藏
页码:247 / 254
页数:7
相关论文
共 8 条
[1]  
Cao H.-D., Li H., A gap theorem for self-shrinkers of the mean curvature flow in arbitrary codimension, Calc. Var. Partial Differ. Equ, 46, 3-4, pp. 879-889, (2013)
[2]  
Chen B.-L., Strong uniqueness of the Ricci flow, J. Differ. Geom, 82, 2, pp. 363-382, (2009)
[3]  
Colding T.H., Minicozzi W.P., Generic mean curvature flow I: generic singularities, Ann. Math (2), 175, 2, pp. 755-833, (2012)
[4]  
Futaki A., Li H., Li X.-D., On the first eigenvalue of the Witten-Laplacian and the diameter of compact shrinking solitons, Ann. Global Anal. Geom, 44, 2, pp. 105-114, (2013)
[5]  
Huisken G., Asymptotic behavior for singularities of the mean curvature flow, J. Differ. Geom, 31, 1, pp. 285-299, (1990)
[6]  
Lotay J.D., Pacini, T.: Coupled flows, convexity and calibrations: Lagrangian and totally real geometry. arXiv
[7]  
Smoczyk K., The Lagrangian mean curvature flow. Univ, Leipzig (Habil.-Schr.), (2000)
[8]  
Yamamoto H., Ricci-mean curvature flow in gradient shrinking Ricci solitons