On a sum involving the Mangoldt function

被引:0
作者
Jing Ma
Jie Wu
机构
[1] Jilin University,School of Mathematics
[2] Université Paris-Est Créteil,CNRS LAMA 8050, Laboratoire d’Analyse et de Mathématiques Appliquées
来源
Periodica Mathematica Hungarica | 2021年 / 83卷
关键词
von Mangoldt function; Asymptotic formula; 11N37; 11A25;
D O I
暂无
中图分类号
学科分类号
摘要
Let Λ(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda (n)$$\end{document} be the von Mangoldt function, and let [t] be the integral part of real number t. In this note we prove that the asymptotic formula ∑n⩽xΛ([xn])=x∑d⩾1Λ(d)d(d+1)+Oε(x35/71+ε)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \sum _{n\leqslant x} \Lambda \Big (\Big [\frac{x}{n}\Big ]\Big ) = x\sum _{d\geqslant 1}\frac{\Lambda (d)}{d(d+1)} + O_{\varepsilon }\big (x^{35/71+\varepsilon }\big ) \end{aligned}$$\end{document}holds as x→∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$x\rightarrow \infty $$\end{document} for any ε>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varepsilon >0$$\end{document}.
引用
收藏
页码:39 / 48
页数:9
相关论文
共 9 条
  • [1] Bordellès O(2019)On a Sum Involving the Euler Function J. Number Theory 202 278-297
  • [2] Dai L(1980)An elementary method in prime number theory Acta Arith. 37 111-115
  • [3] Heyman R(2019)On a Sum Involving the Euler Totient Function Indag. Mathematicae 30 536-541
  • [4] Pan H(2020)Note on a paper by Bordellès, Dai, Heyman, Pan and Shparlinski Periodica Math. Hungarica 80 95-102
  • [5] Shparlinski IE(2020)On a sum Involving the Euler Function J. Number Theory 211 199-219
  • [6] Vaughan RC(undefined)undefined undefined undefined undefined-undefined
  • [7] Wu J(undefined)undefined undefined undefined undefined-undefined
  • [8] Wu J(undefined)undefined undefined undefined undefined-undefined
  • [9] Zhai W(undefined)undefined undefined undefined undefined-undefined