The differential geometry of blow-ups

被引:0
|
作者
D. V. Bykov
机构
[1] Steklov Mathematical Institute of the Russian Academy of Sciences,
来源
关键词
blow-up; adjunction formula; Kähler–Einstein metric;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the local geometry in the vicinity of a sphere CP1 embedded with a negative normal bundle. We show that the behavior of the Kähler potential near a sphere embedded with a given normal bundle can be determined using the adjunction formula. As a by-product, we construct (asymptotically locally complex-hyperbolic) Kähler–Einstein metrics on the total spaces of the line bundles O(−m), m ≥ 3, over CP1.
引用
收藏
页码:1636 / 1648
页数:12
相关论文
共 50 条
  • [31] Numerical invariants for bundles on blow-ups
    Ballico, E
    Gasparim, E
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (01) : 23 - 32
  • [32] Extremal Graphs for Blow-Ups of Keyrings
    Zhenyu Ni
    Liying Kang
    Erfang Shan
    Hui Zhu
    Graphs and Combinatorics, 2020, 36 : 1827 - 1853
  • [33] Mori dream spaces and blow-ups
    Castravet, Ana-Maria
    ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 1, 2018, 97 : 143 - 167
  • [34] Integral morphisms and log blow-ups
    Fumiharu Kato
    Israel Journal of Mathematics, 2022, 247 : 831 - 843
  • [35] Blow-ups and modifications of lcK spaces
    Preda, Ovidiu
    Stanciu, Miron
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (05) : 2481 - 2492
  • [36] Pure log terminal blow-ups
    Kudryavtsev, SA
    MATHEMATICAL NOTES, 2001, 69 (5-6) : 814 - 819
  • [37] Tiling Transitive Tournaments and Their Blow-ups
    Raphael Yuster
    Order, 2003, 20 : 121 - 133
  • [38] Integral morphisms and log blow-ups
    Kato, Fumiharu
    ISRAEL JOURNAL OF MATHEMATICS, 2022, 247 (02) : 831 - 843
  • [39] Two inequalities for a sequence of blow-ups
    Pukhlikov, A. V.
    MATHEMATICAL NOTES, 2015, 97 (5-6) : 970 - 973
  • [40] NASH BLOW-UPS OF JET SCHEMES
    De Fernex, Tommaso
    Docampo, Roi
    ANNALES DE L INSTITUT FOURIER, 2019, 69 (06) : 2577 - 2588