The differential geometry of blow-ups

被引:0
|
作者
D. V. Bykov
机构
[1] Steklov Mathematical Institute of the Russian Academy of Sciences,
来源
关键词
blow-up; adjunction formula; Kähler–Einstein metric;
D O I
暂无
中图分类号
学科分类号
摘要
We discuss the local geometry in the vicinity of a sphere CP1 embedded with a negative normal bundle. We show that the behavior of the Kähler potential near a sphere embedded with a given normal bundle can be determined using the adjunction formula. As a by-product, we construct (asymptotically locally complex-hyperbolic) Kähler–Einstein metrics on the total spaces of the line bundles O(−m), m ≥ 3, over CP1.
引用
收藏
页码:1636 / 1648
页数:12
相关论文
共 50 条
  • [1] THE DIFFERENTIAL GEOMETRY OF BLOW-UPS
    Bykov, D. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2015, 185 (02) : 1636 - 1648
  • [2] Blow-Ups in Generalized Kahler Geometry
    Duran, J. L. van der Leer
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 357 (03) : 1133 - 1156
  • [3] BLOW-UPS IN GENERALIZED COMPLEX GEOMETRY
    Bailey, M. A.
    Cavalcanti, G. R.
    Duran, J. L. van der Leer
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 371 (03) : 2109 - 2131
  • [4] Blow-Ups in Generalized Kähler Geometry
    J. L. van der Leer Durán
    Communications in Mathematical Physics, 2018, 357 : 1133 - 1156
  • [5] BOTERO BLOW-UPS
    REICHARDT, J
    ART INTERNATIONAL, 1983, 26 (03): : 18 - &
  • [6] Permissible Blow-Ups
    Cossart, Vincent
    Jannsen, Uwe
    Saito, Shuji
    DESINGULARIZATION: INVARIANTS AND STRATEGY: APPLICATION TO DIMENSION 2, 2020, 2270 : 37 - 48
  • [7] Blow-ups of canonical singularities
    Prokhorov, YG
    ALGEBRA, 2000, : 301 - 317
  • [8] Chern classes of blow-ups
    Aluffi, Paolo
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2010, 148 : 227 - 242
  • [9] On Blow-Ups and Injectivity of Quivers
    Grilliette, Will
    Seacrest, Deborah E.
    Seacrest, Tyler
    ELECTRONIC JOURNAL OF COMBINATORICS, 2013, 20 (02):
  • [10] Ancient blow-ups - Response
    不详
    AMERICAN SCIENTIST, 2007, 95 (02) : 100 - 101