We discuss the local geometry in the vicinity of a sphere CP1 embedded with a negative normal bundle. We show that the behavior of the Kähler potential near a sphere embedded with a given normal bundle can be determined using the adjunction formula. As a by-product, we construct (asymptotically locally complex-hyperbolic) Kähler–Einstein metrics on the total spaces of the line bundles O(−m), m ≥ 3, over CP1.
机构:
Univ Utrecht, Math Inst, NL-3508 TA Utrecht, Netherlands
Univ Waterloo, Dept Math, Waterloo, ON N2L 3G1, CanadaUniv Utrecht, Math Inst, NL-3508 TA Utrecht, Netherlands
Bailey, M. A.
Cavalcanti, G. R.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utrecht, Dept Math, NL-3584 CD Utrecht, NetherlandsUniv Utrecht, Math Inst, NL-3508 TA Utrecht, Netherlands
Cavalcanti, G. R.
Duran, J. L. van der Leer
论文数: 0引用数: 0
h-index: 0
机构:
Univ Utrecht, Dept Math, NL-3584 CD Utrecht, Netherlands
Univ Toronto, Dept Math, Toronto, ON M55 2E4, CanadaUniv Utrecht, Math Inst, NL-3508 TA Utrecht, Netherlands