On the quadratic finite element approximation to the obstacle problem

被引:0
作者
Wang L.-H. [1 ]
机构
[1] State Key Lab. of Sci./Eng. Comp., Acad. of Math. and System Sciences, Chinese Academy of Sciences, Beijing 100080
关键词
Mathematics Subject Classification (1991): 65N30;
D O I
10.1007/s002110100368
中图分类号
学科分类号
摘要
In this paper, we obtain the error bound O (h3/2-ε) for any ε > 0, for the piecewise quadratic finite element approximation to the obstacle problem, without the hypothesis that the free boundary has finite length (see [3]).
引用
收藏
页码:771 / 778
页数:7
相关论文
共 9 条
  • [1] Adams R.A., Sobolev Spaces, (1975)
  • [2] Brenner S.C., Scott L.R., The Mathematical Theory of Finite Element Methods, (1994)
  • [3] Brezzi F., Hager W.W., Raviart P.A., Error estimates for the finite element solution of variational inequalities, Numer. Math., 28, pp. 431-443, (1977)
  • [4] Brezzi F., Sacchi G., A finite element approximation of variational inequality related hydraulics, Calcolo, 13, 3, pp. 259-273, (1976)
  • [5] Ciarlet P.G., The Finite Element Method for Elliptic Problems, (1978)
  • [6] Falk R., Error estimates for the approximation of a class of variational inequalities, Math. Comput., 28, pp. 963-971, (1974)
  • [7] Kinderlehrer D., Stampacchia G., An Introduction to Variational Inequalities and Their Applications, (1980)
  • [8] Rodrigues J.F., Obstacle Problems in Mathematical Physics, (1987)
  • [9] Strang G., The finite element method- linear and nonlinear application, Proceedings of the International Congress of Mathematicians, (1974)