Blow-up of solutions of strongly nonlinear equations of pseudoparabolic type

被引:4
作者
Korpusov M.O. [1 ]
Sveshnikov A.G. [1 ]
机构
[1] Moscow State University,
关键词
Banach Space; Limit Relation; Local Solvability; Frechet Derivative; Pseudoparabolic Equation;
D O I
10.1007/s10958-007-0541-3
中图分类号
学科分类号
摘要
[No abstract available]
引用
收藏
页码:1 / 142
页数:141
相关论文
共 240 条
[91]  
Hagen T., Turi J., On a class of nonlinear BBM-like equations, Comput. Appl. Math., 17, pp. 161-172, (1998)
[92]  
Hille E., Phillips R.S., Functional Analysis and Semigroups, (1957)
[93]  
Hu B., Yin H.-M., The profile near blow-up time for solutions of the heat equation with a nonlinear boundary condition, Trans. Amer. Math. Soc., 346, pp. 117-135, (1994)
[94]  
Jeffrey A., Engelbrecht J., Nonlinear dispersive waves in a relaxing medium, Wave Motion, 2, pp. 255-266, (1980)
[95]  
Kaikina E.I., Naumkin P.I., Shishmarev I.A., Periodic Problem for A Model Nonlinear Evolution Equation, (2000)
[96]  
Kamenets F.F., Lakhin V.P., Mikhailovskii A.B., Nonlinear electron gradient waves, Fiz. Plasmy, 13, pp. 412-416, (1987)
[97]  
Kantorovich L.V., Akilov G.P., Functional Analysis, (1977)
[98]  
Kapitonov B.V., The potential theory for the equation of small oscillations of a rotating fluid, Mat. Sb., 109, pp. 607-628, (1979)
[99]  
Kaplan S., On the growth of solutions of quasi-linear parabolic equations, Commun. Pure Appl. Math., 16, pp. 305-330, (1963)
[100]  
Karch G., Asymptotic behavior of solutions to some pseudoparabolic equations, Math. Methods Appl. Sci., 20, pp. 271-289, (1997)