Using structural break inference for forecasting time series

被引:0
|
作者
Gantungalag Altansukh
Denise R. Osborn
机构
[1] National University of Mongolia,Department of Economics
[2] University of Manchester,Economics, School of Social Sciences
来源
Empirical Economics | 2022年 / 63卷
关键词
Forecasting time series; Structural breaks; Confidence intervals; Combining forecasts; Productivity growth; C32; C53;
D O I
暂无
中图分类号
学科分类号
摘要
Rather than relying on a potentially poor point estimate of a coefficient break date when forecasting, this paper proposes averaging forecasts over sub-samples indicated by a confidence interval or set for the break date. Further, we examine whether explicit consideration of a possible variance break and the use of a two-step methodology improves forecast accuracy compared with using heteroskedasticity robust inference. Our Monte Carlo results and empirical application to US productivity growth show that averaging using the likelihood ratio-based confidence set typically performs well in comparison with other methods, while two-step inference is particularly useful when a variance break occurs concurrently with or after any coefficient break.
引用
收藏
页码:1 / 41
页数:40
相关论文
共 50 条
  • [1] Using structural break inference for forecasting time series
    Altansukh, Gantungalag
    Osborn, Denise R.
    EMPIRICAL ECONOMICS, 2022, 63 (01) : 1 - 41
  • [2] A Note on Adaptive Group Lasso for Structural Break Time Series
    Behrendt, Simon
    Schweikert, Karsten
    ECONOMETRICS AND STATISTICS, 2021, 17 : 156 - 172
  • [3] Forecast Combination Strategies for Handling Structural Breaks for Time Series Forecasting
    Azmy, Waleed M.
    Atiya, Amir F.
    El-Shishiny, Hisham
    MULTIPLE CLASSIFIER SYSTEMS, PROCEEDINGS, 2010, 5997 : 245 - +
  • [4] Forecasting interrupted time series
    Hyndman, Rob J.
    Rostami-Tabar, Bahman
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2025, 76 (04) : 790 - 803
  • [5] Forecasting monthly and quarterly time series using STL decomposition
    Theodosiou, Marina
    INTERNATIONAL JOURNAL OF FORECASTING, 2011, 27 (04) : 1178 - 1195
  • [6] Financial Time Series Forecasting Using Deep Learning Network
    Preeti
    Dagar, Ankita
    Bala, Rajni
    Singh, Ram Pal
    APPLICATIONS OF COMPUTING AND COMMUNICATION TECHNOLOGIES, ICACCT 2018, 2018, 899 : 23 - 33
  • [7] Improving forecasting by estimating time series structural components across multiple frequencies
    Kourentzes, Nikolaos
    Petropoulos, Fotios
    Trapero, Juan R.
    INTERNATIONAL JOURNAL OF FORECASTING, 2014, 30 (02) : 291 - 302
  • [8] Pre and post break parameter inference
    Elliott, Graham
    Mueller, Ulrich K.
    JOURNAL OF ECONOMETRICS, 2014, 180 (02) : 141 - 157
  • [9] Model selection in univariate time series forecasting using discriminant analysis
    Shah, C
    INTERNATIONAL JOURNAL OF FORECASTING, 1997, 13 (04) : 489 - 500
  • [10] Structural Break Inference Using Information Criteria in Models Estimated by Two-Stage Least Squares
    Hall, Alastair R.
    Osborn, Denise R.
    Sakkas, Nikolaos
    JOURNAL OF TIME SERIES ANALYSIS, 2015, 36 (05) : 741 - 762