Reduction and relative equilibria for the two-body problem on spaces of constant curvature

被引:0
作者
A. V. Borisov
L. C. García-Naranjo
I. S. Mamaev
J. Montaldi
机构
[1] Udmurt State University,School of Mathematics
[2] A.A.Blagonravov Mechanical Engineering Research Institute of RAS,undefined
[3] Departamento de Matemáticas y Mecánica IIMAS-UNAM,undefined
[4] Institute of Mathematics and Mechanics of the Ural Branch of RAS,undefined
[5] Izhevsk State Technical University,undefined
[6] University of Manchester,undefined
来源
Celestial Mechanics and Dynamical Astronomy | 2018年 / 130卷
关键词
Reduction; Relative equilibria; Hamiltonian systems; Stability; Two-body problem; Energy–momentum bifurcation diagram;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the two-body problem on surfaces of constant nonzero curvature and classify the relative equilibria and their stability. On the hyperbolic plane, for each q>0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$q>0$$\end{document} we show there are two relative equilibria where the masses are separated by a distance q. One of these is geometrically of elliptic type and the other of hyperbolic type. The hyperbolic ones are always unstable, while the elliptic ones are stable when sufficiently close, but unstable when far apart. On the sphere of positive curvature, if the masses are different, there is a unique relative equilibrium (RE) for every angular separation except π/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi /2$$\end{document}. When the angle is acute, the RE is elliptic, and when it is obtuse the RE can be either elliptic or linearly unstable. We show using a KAM argument that the acute ones are almost always nonlinearly stable. If the masses are equal, there are two families of relative equilibria: one where the masses are at equal angles with the axis of rotation (‘isosceles RE’) and the other when the two masses subtend a right angle at the centre of the sphere. The isosceles RE are elliptic if the angle subtended by the particles is acute and is unstable if it is obtuse. At π/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi /2$$\end{document}, the two families meet and a pitchfork bifurcation takes place. Right-angled RE are elliptic away from the bifurcation point. In each of the two geometric settings, we use a global reduction to eliminate the group of symmetries and analyse the resulting reduced equations which live on a five-dimensional phase space and possess one Casimir function.
引用
收藏
相关论文
共 50 条
[31]   GENERALIZED HOMOGENEOUS FUNCTIONS AND THE TWO-BODY PROBLEM [J].
C.Biasi ;
S.M.S.Godoy .
AppliedMathematicsandMechanics(EnglishEdition), 2005, (02) :171-178
[32]   ON THE PLANAR MOTION IN THE FULL TWO-BODY PROBLEM [J].
Woo, Pamela ;
Misra, Arun K. ;
Keshmiri, Mehdi .
SPACEFLIGHT MECHANICS 2012, 2012, 143 :489-499
[33]   Generalized homogeneous functions and the two-body problem [J].
Biasi, C ;
Godoy, SMS .
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2005, 26 (02) :171-178
[34]   Dynamics of a stochastically perturbed two-body problem [J].
Sharma, Shambhu N. ;
Parthasarathy, H. .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2007, 463 (2080) :979-1003
[35]   Mathematical Algorithm for Solving Two-Body Problem [J].
Alghamdi, M. H. ;
Alshaery, A. A. .
APPLIED MATHEMATICS AND NONLINEAR SCIENCES, 2020, 5 (02) :217-228
[36]   The gauge coupled two-body problem in a ring [J].
Priestley, Joel ;
Valenti-Rojas, Gerard ;
Wright, Ewan M. ;
Ohberg, Patrik .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (01)
[37]   Generalized homogeneous functions and the two-body problem [J].
C. Biasi ;
S. M. S. Godoy .
Applied Mathematics and Mechanics, 2005, 26 :171-178
[38]   On the restricted (N+1)-body problem on surfaces of constant curvature [J].
Andrade, Jaime ;
Espejo, D. E. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 362 :314-354
[39]   The restricted three body problem on surfaces of constant curvature [J].
Andrade, Jaime ;
Perez-Chavela, Ernesto ;
Vidal, Claudio .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (09) :4486-4529
[40]   Hyperbolic relative equilibria for the negative curved n-body problem [J].
Perez-Chavela, Ernesto ;
Manuel Sanchez-Cerritos, Juan .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2019, 67 :460-479