SSD with multi-scale feature fusion and attention mechanism

被引:0
|
作者
Qiang Liu
Lijun Dong
Zhigao Zeng
Wenqiu Zhu
Yanhui Zhu
Chen Meng
机构
[1] Hunan University of Technology,College of Computer Science
[2] Hunan University of Technology,Intelligent Information Perception and Processing Technology Hunan Province Key Laboratory
关键词
D O I
暂无
中图分类号
学科分类号
摘要
In the field of the Internet of Things, image acquisition equipment is the very important equipment, which will generate lots of invalid data during real-time monitoring. Analyzing the data collected directly from the terminal by edge calculation, we can remove invalid frames and improve the accuracy of system detection. SSD algorithm has a relatively light and fast detection speed. However, SSD algorithm do not take full advantage of both shallow and deep information of data. So a multiscale feature fusion attention mechanism structure based on SSD algorithm has been proposed in this paper, which combines multiscale feature fusion and attention mechanism. The adjacent feature layers for each detection layer are fused to improve the feature information expression ability. Then, the attention mechanism is added to increase the attention of the feature map channels. The results of the experiments show that the detection accuracy of the optimized model is improved, and the reliability of edge calculation has been improved.
引用
收藏
相关论文
共 50 条
  • [21] Multi-Scale Feature Fusion with Attention Mechanism Based on CGAN Network for Infrared Image Colorization
    Ai, Yibo
    Liu, Xiaoxi
    Zhai, Haoyang
    Li, Jie
    Liu, Shuangli
    An, Huilong
    Zhang, Weidong
    APPLIED SCIENCES-BASEL, 2023, 13 (08):
  • [22] Robust coverless image steganography based on DenseUNet with multi-scale feature fusion and attention mechanism
    Li, Xiaopeng
    Zhang, Qiuyu
    Li, Zhe
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (11) : 8251 - 8266
  • [23] Object Detection of Remote Sensing Image Based on Multi-Scale Feature Fusion and Attention Mechanism
    Du, Zuoqiang
    Liang, Yuan
    IEEE ACCESS, 2024, 12 : 8619 - 8632
  • [24] Remote Sensing Object Detection Method Based on Attention Mechanism and Multi-scale Feature Fusion
    Liu, Yang
    Xiao, Yewei
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7155 - 7160
  • [25] Multi-scale feature fusion network with local attention for lung segmentation
    Xie, Yinghua
    Zhou, Yuntong
    Wang, Chen
    Ma, Yanshan
    Yang, Ming
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2023, 119
  • [26] Text Detection Algorithm Based on Multi-Scale Attention Feature Fusion
    She, Xiangyang
    Liu, Zhe
    Dong, Lihong
    Computer Engineering and Applications, 2024, 60 (01) : 198 - 206
  • [27] Small Object Detection using Multi-scale Feature Fusion and Attention
    Liu, Baokai
    Du, Shiqiang
    Li, Jiacheng
    Wang, Jianhua
    Liu, Wenjie
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7246 - 7251
  • [28] Multi-Scale Feature Attention Fusion for Image Splicing Forgery Detection
    Liang, Enji
    Zhang, Kuiyuan
    Hua, Zhongyun
    Jia, Xiaohua
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2025, 21 (01)
  • [29] Pyramid attention object detection network with multi-scale feature fusion
    Chen, Xiu
    Li, Yujie
    Nakatoh, Yoshihisa
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 104
  • [30] Multi-Scale Feature Fusion Network with Attention for Single Image Dehazing
    Hu, Bin
    PATTERN RECOGNITION AND IMAGE ANALYSIS, 2021, 31 (04) : 608 - 615